
IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 71 (2008) 016101 (23pp) doi:10.1088/0034-4885/71/1/016101

Atomic force microscopy and
spectroscopy
Yongho Seo1 and Wonho Jhe2

1 Faculty of Nanotechnology & Advanced Material Engineering and Institute of Fundamental Physics,
Sejong University, Seoul 143-747, Korea
2 Center for Nano Liquid and Department of Physics and Astronomy, Seoul National University,
Seoul 151-747, Korea

E-mail: whjhe@snu.ac.kr

Received 4 July 2007, in final form 25 September 2007
Published 17 December 2007
Online at stacks.iop.org/RoPP/71/016101

Abstract
Since it was invented by Binnig et al in 1986, atomic force microscopy (AFM) has played a crucial
role in nano-scale science and technology. AFM is a microscopic technique imaging a surface
topography by using attractive and repulsive interaction forces between a few atoms attached at a
tip on a cantilever and a sample. In the case of attractive forces, there are three main contributions
causing AFM. These are short-range chemical force, van der Waals force and electrostatic force.
As the effective ranges of these forces are different, one of them is dominant depending on
distance. Atomic force spectroscopy is the force-versus-distance measurement when using AFM.
The atomic force can be detected by cantilever bending caused by a tip–sample interacting force,
which is called static AFM. Also, the atomic force can be detected by using the resonant properties
of a cantilever, which is called dynamic AFM. Under the on-resonance condition, the frequency,
amplitude or phase of the cantilever will be shifted by the interaction force. While the force can be
estimated in static AFM, for dynamic AFM it requires complicated formalism to evaluate the force
from measured amplitude, phase or frequency data. Recently developed techniques for ultra-high
resolution imaging unveil sub-atomic features of the sample, which are facilitated by low
temperature, ultra-high vacuum environments together with a stiff cantilever. In this study,
progress related to theoretical and experimental imaging and force spectroscopy will be discussed.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Since its development in 1986 by Binnig [1, 2], many
experimental studies on nano-scale phenomena have utilized
atomic force microscopy (AFM) to image the atomic
topography and measure interacting forces [3–5]. AFM has
been employed in a variety of research fields including physics,
chemistry, biology and engineering. In order to measure
the force or potential energy between a small tip and a
sample, a tiny probe called a cantilever is employed. The
cantilever provides a force sensor and a force actuator. By
pushing the cantilever to the sample, its topographic height
can be measured, and the interacting force between the tip
attached to the cantilever and the sample can be measured
by pulling it. There are various methods for detecting the
motion of the cantilever with nanometre scale accuracy. These
include tunneling current measurement [2], optical deflection
technique [6], fiber interferometry [7] and piezoresistive
methods [8].

At first, Binnig used a gold foil as a cantilever and attached
a diamond tip to it [2]. Now cantilevers are made of Si [10],
SiO2 or Si3N4 [9] by using a micromachining technique.
Figure 1 shows an example of a design of a commercial
cantilever. The large holding block is a piece cut from a Si
wafer and a tiny cantilever is formed on it. For optical detection
of cantilever motion, the back side of the cantilever is supposed
to be reflective. It is coated with a metallic film. A tip of a
few µm length facing down is attached to the cantilever. The
typical dimensions of the cantilever are W � 30 µm, t � 1 µm
and L � 100 µm.

When a tip is close to a sample, it experiences an attractive
force. Then, the force becomes repulsive at a certain point. If
the tip–sample distance is closer than the switching point, the
tip is in contact with the sample. In contrast, the terminology
‘non-contact’ means that the tip is away from the contact

Figure 1. Example of the design of a commercial cantilever. The
large holding block is a Si piece and a tiny cantilever ∼100 µm long
is attached to it. A tip ∼10 µm long facing down is attached to the
cantilever. Typically, the back side of the cantilever is coated with a
metallic film.

regime. By pushing the tip close to the sample and pulling
back, one can measure the cantilever deflection, which is
supposed to be proportional to the interacting force between
the tip and the sample. This is the basic principle of static
AFM where the force can be estimated by using Hooke’s law.

On the other hand, the cantilever can be vibrated with
resonance frequency and topographic information. Its force
can be estimated from the change of vibrating amplitude,
phase or resonance frequency. This is the so-called
dynamic AFM. Due to its simplicity, studies in a variety of
fields including molecular or biological samples have been
performed using the static AFM method [11]. However, the
principle of dynamic AFM is complicated, and interpreting
it is also challenging. Dynamic AFM can be classified
into AM-AFM (amplitude modulation AFM) and FM-AFM
(frequency modulation AFM). The AM-AFM measures the
amplitude change of cantilever vibration excited by an external
force with a constant frequency, whereas the FM-AFM
measures its resonance frequency change excited by a positive
feedback oscillation. There have been many efforts to
extract the force information from experimental dynamic AFM
data. Perturbation theory, Fourier expansion, variational
methods and inversion procedures were also developed to
find the relationship between frequency shifts and tip–sample
interaction.

To improve the force sensitivity or the signal to noise
(S/N ) ratio, theoretical and experimental parameter studies
on the amplitude and stiffness of the cantilever have been
performed. For high resolution measurements, very small
vibration amplitude (∼1 Å) and high stiffness (∼103 N m−1)
were suggested [5, 12–14]. A special sensor which satisfies
this condition is the quartz crystal tuning fork (TF). Since
Karrai and Grober employed it for the near-field scanning
optical microscope [15], the tuning fork has become a very
promising force sensor for almost all types of scanning probe
microscopies including electrostatic [16] and magnetic force
microscopy [17]. In this report, the general principles of
AM- and FM-AFM, force spectroscopy, imaging of atoms and
recent experimental techniques for atomic resolution imaging
and force measurement are discussed.

2. Interacting forces

With AFM, one can measure the force between atoms at the tip
and the sample which are located as close as 0.1–100 nm. The
forces can be classified into attractive and repulsive forces. For
attractive forces, van der Waals (vdW) interaction, electrostatic
force and chemical force are included. The chemical forces
are described by many different theoretical models. Among
them, we can mention Morse potential [18], Stillinger–Weber
potential and Tersoff potential [5]. The repulsive forces
can be considered as hard sphere repulsion, Pauli-exclusion
interaction and electron–electron Coulomb interaction. In
general, the repulsive forces are very short-range forces and
have an exponential decaying or inverse power law with high-
order distance dependence.
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2.1. van der Waals interactions

The van der Waals interaction is based on the Coulomb
interaction between electrically neutral atoms which are locally
charged by thermal or zero-point quantum fluctuations [19].
It is well known that the vdW potential between two atoms
has a distance dependence of ∼z−6. In the case of AFM
measurements, however, there are several hundred atoms at
a tip and sample, and the resultant force should be calculated
from a vector sum of vdW forces between them. The vdW
interaction between macroscopic samples was calculated by
Hamaker [20]. Hamaker’s approach does not consider the
retardation effect due to the finite speed of light. It is applicable
for a sample and tip of ∼10 nm scale [5]. For a spherical tip
with radius R and a flat sample, the vdW potential VvdW and
force FvdW are given by [18]

VvdW = −AHR

6z
, FvdW = −AHR

6z2
, (1)

where z is the closest distance between the tip and the sample
and AH is the Hamaker constant. The Hamaker constant is
determined by the physical properties of materials such as
atomic polarizability and the density of the tip and the sample.
Typically, AH is in the order of 1 eV for solids. Depending on
the shape of the tip and the sample VvdW can have different
power laws. In the case of conical and pyramidal tips, VvdW

is estimated as � ln z [21]. For a tip with radius R = 10 nm
and distance z = 1 nm, the vdW potential is � −1.6 eV and
the corresponding force is �0.3 nN. This amount of force is
significant for nanometre scale and the vdW force provides a
major contribution to AFM topographic measurement [5]. In
order to reduce the vdW interaction, one can perform the AFM
measurement by immersing the tip and sample in water [22].
Then, the van der Waals forces exerted by the water molecules
cancel out the force between the tip and sample.

2.2. Electrostatic force

The electrostatic force is generated between a charged or
conductive tip and sample which have potential difference U .
For a tip–sample distance z smaller than the tip radius R, the
electrostatic force Fel is given by [23–25]

Fel(z) = −πε0RU 2

z
, (2)

where ε0 is the dielectric constant. As Fel has z−1 power
law dependence, the electrostatic force is a relatively long-
range force compared with the vdW force. For example, in
typical experimental conditions, the U � 1 V, R � 100 nm
and z = 1 nm, the electrostatic force Fel amounts to �3 nN [5].

The electrostatic force is not limited, but ferroelectric or
charged semiconducting samples experience the electrostatic
force. Moreover, ionic crystals like KBr, LiF, NaCl and MgO
also exert an electrostatic force to the tip on the atomic scale
[26–28]. The electrostatic force exerted by ionic crystals
provides a short-range force because at a long distance from
the surface, neighboring anions and cations cancel each other’s
electrostatic forces [5].

2.3. Chemical force

When two or more atoms come together to form a molecule,
the force that tightly binds the atoms is called a chemical force
[18]. For covalent bonds, the force is referred to as a covalent
force. The covalent bonds have directionality depending on
atomic location and valency. Covalent forces are short range
(0.1–0.2 nm) [18]. Their bonding energies are 100–300 kBT

per bond and these forces are roughly 3–9 nN.
The chemical force can be treated on the basis of quantum

mechanics [5]. The chemical bonding energy is described by
the Morse potential VMorse [5, 18],

VMorse = −Ebond(2e−κ(z−σ) − e−2κ(z−σ)), (3)

where Ebond is bonding energy, σ equilibrium distance and
1/κ decay length. The Morse potential is induced by
approximation of the covalent bonding interaction.

2.4. Capillary force

A hydrophilic surface adsorbs water molecules in ambient
conditions and a water layer forms on the surface. When a
tip is close to the water layer, a liquid bridge called a meniscus
is formed between the tip and the sample. This meniscus
causes an attractive force (called capillary force) between the
tip and the sample. The basis of the capillary force is the vdW
forces among the water molecules and atoms at the tip and the
sample [29, 30].

Recently, Jhe’s group reported on the formation and
manipulation of a nanometre scale meniscus of condensed
water molecules that form between the tip and the sample
[31]. They used a trident-shape quartz tuning fork as a
force sensor [32]. An unusual stepwise decrease in the force
gradient associated with a thin water bridge formed between
the tip–sample gap was observed while the tip retracted.
The stepwise force gradient change showed regularity in
step heights (0.5 N m−1) and plateau lengths (1 nm). Such
quantized elasticity was explained as an atomic-scale stick
slip at the tip–water interface. A thermodynamic-instability-
induced rupture of the water meniscus (5 nm long and 2.6 nm
wide) was also found. This study opened up a research field
for a nanometric aqueous column [31].

2.5. Repulsive force

Basically, the repulsive force between the tip and the sample is
referred to as the Pauli exclusion or ionic repulsion [19]. As an
atom approaches another atom, the electronic wave function
will be overlapped and a very strong repulsion will be generated
by either Coulomb force or Pauli exclusion [19]. Generally,
this repulsion force is short range. For instance, in Lennard–
Jones (LJ) potential

VLJ = −4ε

(
σ 6

z6
− σ 12

z12

)
, (4)

where ε is the depth of the potential well, σ is the distance
at which the force is zero. The z−6 distance dependence
comes from the van der Waals attractive interaction and
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z−12 is given by the repulsive force between two atoms [19].
The LJ potential was derived from approximation of two
atom interaction. In the case of many atomic interactions,
the Hamaker approach integrates the whole vector forces
applied, and the z−12 dependence will be modified depending
on the shape of the tip. If the contact area between
the tip and the sample is large and tens or hundreds of
atoms are involved in the contact, the repulsive force can
be considered a mechanical or elastic force due to physical
deformation [4]. The models based on the elasticity and
adhesion include Hertz, Johnson–Kendall–Roberts (JKR) and
Derjaguin–Muller–Toporoz (DMT) [3, 4].

2.6. Atomic resolution

Since the Si 7 × 7 reconstruction on a Si(1 1 1) surface was
imaged using a scanning tunneling microscope (STM) invented
in 1982 by Binnig and Rohrer [33, 34], atomic resolution
imaging has been obtained by STM routinely. In the case
of AFM, Giessibl showed the Si 7 × 7 using UHV condition
AFM in 1995 [35]. He used a modified cantilever beam
and measured the force gradient employing the frequency
modulation technique. The Si 7 × 7 structure was imaged in
a non-contact mode with atomic resolution 6 Å lateral, 0.1 Å
vertical.

On the other hand, in contact mode AFM, there is
controversy related to whether or not the true atomic resolution
can be obtained [36]. For example, atomic resolution for
layered materials was reported [37], but the images rarely
showed any individual surface defects which were routinely
observed by STM. In particular, atomic-scale patterns persist
even at large forces of up to 100 nN. The contact area is
estimated to be 100 Å, which indicates that the images obtained
may represent collective interactions between several atoms in
the tip and the sample [32]. It is also difficult to obtain true
atomic resolution in ambient conditions by using non-contact
AFM, due to air drift and sound noise, as well as surface
adsorbates.

Giessibl obtained an ultra high resolution (sub-atomic
scale) image of Si 7×7 structure by using a quartz tuning fork
rather than conventional cantilevers [35]. The quartz tuning
fork has high stiffness 2 or 3 orders of magnitude higher than
that of the cantilever. Also, Jhe’s group obtained an atomic
resolution by using non-contact AFM with a quartz tuning fork
in ambient conditions [32]. They employed a high stiffness,
trident-shaped quartz crystal tuning fork oscillating at 1 MHz
with a high spring constant of 4×104 N m−1. The high stiffness
sensor allowed true atomic resolution of a cleaved mica surface
in air.

In general, the atomic resolution is provided by short-
range interactions [4]. The vdW interaction is a long range
and collective force including many atoms at the tip and in the
sample. Rather than vdW interaction, the chemical interaction
of covalent crystal or electrostatic force given by ions of the
ionic crystal is supposed to be dominant to achieve atomic
resolution.

For semiconductor surfaces, the most probable source
providing atomic resolution is the covalent bonding interaction

(chemical force) [4]. For both the semiconductor (Si) surface
and the Si tip, there are uncoordinated dangling bonds, through
which the atoms in the tip and the sample may have strong
attractive interaction to form a covalent bonding. This behavior
is purely a quantum mechanical phenomenon and completely
different from vdW interaction.

3. Static atomic force microscopy and spectroscopy

3.1. Static atomic force microscopy

While the STM uses a tunneling current between a metallic
tip and a sample to control the distance between the sample
and the tip, the static AFM is operated by measuring a
repulsive force between the sample and the tip. The repulsive
atomic force includes electronic Coulomb repulsion or Pauli-
exclusion force. For AFM, the sample and the tip are not
necessarily metallic, differently from STM. When Binnig
et al [1, 2] invented the AFM, they employed the tunneling
current measurement technique, similarly to STM, to measure
the deflection of the metallic cantilever. In addition to the
cantilever, another metallic tip was placed close to the back
side of the cantilever, and the tunneling current from the
tip to the cantilever was measured. Besides the tunneling
current method, capacitance measurement, optical deflection
technique, optical fiber interferometry and piezoelectric (or
piezoresistive) [8, 38–40] techniques were developed for
detecting the cantilever bending motion. Among them, the
optical deflection technique has been considered the most
reliable and sensitive method for general AFM.

Figure 2 shows a schematic of the optical deflection
technique. A laser beam from a laser diode (LD) is focused
on the end of the cantilever, and the reflected beam is aligned
at the center of the position sensitive photo diode (PSPD).
The PSPD has a quadrant shape with four independent photo-
diodes separated with ∼100 µm gap. When the tip experiences
an attractive (repulsive) force, the cantilever will be bent toward

Figure 2. Optical deflection technique. A laser beam from a LD is
focused at the end of the cantilever, and a reflected beam is aligned
at the center of the PSPD. When the cantilever bends, the A–B
signal of the PSPD is changed and fed to the PI controller to control
the height of the cantilever through the Z-actuator.
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Figure 3. Tip–sample distance parameters for (a) static and (b)
dynamic AFM. (a) z is defined as the distance between the sample
and the tip assuming no interaction between them exists. D is the
real tip–sample distance. δc and δs are the displacements of the
cantilever and the sample due to the tip–sample interaction,
respectively. (b) z is defined as an average distance between the tip
and the sample, d the minimum distance and q the instant
displacement from z of the cantilever when the cantilever is
oscillated by an external force.

(away from) the sample surface. The face of the PSPD is
oriented toward the bounced beam. When the cantilever is bent
toward (away from) the surface, the beam path is shifted to the
upper (lower) two photo-diodes. The beam path shift causes
the intensity difference between the upper and lower photo-
diodes which is called the A–B signal. The A–B signal is fed to
a proportion-integration (PI) controller to control the bending
angle of the cantilever through a Z-actuator made by a piezo-
actuator. In the past, the PI controller circuit was produced by
analog electronics. Now, it is operated by a DSP chip set or a
stand-alone computer (so-called real-time module) for digital
control.

The static AFM was named to be distinguished from the
dynamic AFM. While in the former the cantilever remains
static, in the latter the cantilever is vibrated with its resonance
frequency. In static AFM, the bending of the cantilever
is only observable and its bending force can be calculated
by Hooke’s law. The cantilever can be approximated as a
spring with damping. Ignoring its transient behavior, the
position shift of the cantilever end is equal to the force
divided by its spring constant k. Typically, the spring constant
k of a micro-machined cantilever is designed to be 0.1–
10 N m−1, depending on its particular experimental purpose.
The free position z in figure 3(a) is defined as the distance
between the sample and the cantilever assuming no interacting
force between them exists. If the tip–sample distance is
considerable, the interaction can be ignored, and z can be
estimated from the applied voltage on the Z-actuator by using
calibration data. So z is the only controllable parameter
in this system, and it is called the displacement rather than
the distance. Due to the tip–sample interaction not only the
cantilever but also the sample is subject to deformation. δc

is the vertical position change of the tip from the original
point z which can be expected in non-interacting conditions.

δs implies the inflation (or deflation) of the sample due to
the interaction. Finally, D is the real tip–sample distance,
D = z − δc − δs. Typically, the spring constant of cantilever k

is much smaller than that of the sample and δs can be ignored
for common solid samples.

3.2. Force spectroscopy using static AFM

Force spectroscopy is a technique to measure a local force
acting on the tip exerted by a sample with spatial resolution
on the nanometre scale. While AFM imaging is performed
by scanning the sample (or tip) in the XY-direction, force
spectroscopy is done by approaching and retracting the tip
(or sample) in the Z-direction. The force–distance curve is a
plot of the tip–sample interaction force versus the tip–sample
distance. In order to obtain the force–distance curve, the tip (or
the sample) is ramped along the vertical axis (Z-axis) and the
cantilever deflection δc is measured. The cantilever bending
force is given by Hooke’s law:

Fc = −kδc, (5)

where k is the spring constant of the cantilever and Fc the elastic
force of the cantilever. The AFM force–distance curve is given
by balancing two contributing forces. These are the tip–sample
interaction force F(D) and the elastic force of the cantilever
Fc. By using the graphical interpretation shown in figure 4,
one can understand the resulting force–displacement curve. In
figure 4(a) the curve F(D) shows the typical shape of the tip–
sample interacting force as a function of the distance D, which
consists of long range attractive (e.g. van der Waals force)
and short-range repulsive forces (e.g. Lennard–Jones, or Morse
force), as discussed in section 2. Ignoring δs (D = z − δc),
equation (5) can be modified as a function of D;

Fc(D) = k · (D − z). (6)

The lines 1–4 show Fc as a function of D. In an equilibrium
state, the F(D) should be equal to Fc and that point is given
by the intersection (α, β, γ , δ) of two lines. At the intersection
point β for example, the D value is the real distance between
the tip and the sample. The controllable (or measurable) value
z is given by the intersection between the line 2 and the x-axis,
and the δc is determined by the difference between Dβ and zβ

as depicted in the graph. The value we want to know is the
force between the tip and sample which is equal to Fc = kδc.

In figure 4(b) the resulting force–displacement curve is
illustrated. At each distance, the cantilever is bent until the
elastic force of the cantilever becomes equal to the tip–sample
interaction force. In this way, the system reaches equilibrium.
When the tip is far from the sample (1), F(D) is close to zero.
At the intersecting point α in figure 4(a), δc is also close to
zero, as indicated in (b). As the tip approaches the sample,
the gap between D and z will grow, monotonically. Because
z is larger than D, δc and Fc are negative numbers, there is an
attractive force. At point β, an abrupt change occurs which
is called jump-to-contact. The jump-to-contact means that the
cantilever bent by the attractive force jumps to the surface of
the sample. At γ , the Fc becomes a positive value meaning
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Figure 4. (a) The curve F(D) shows the typical shape of the tip-sample interacting force. The lines 1–4 show Fc as a function of D. In an
equilibrium state, the F(D) should be equal to Fc and that point is given by the intersection (α, β, γ , δ) of two lines. At the intersection
point β, Fβ is the interacting force, Dβ is the tip-sample distance and the δc is the cantilever bending distance. (b) Interacting force as a
function of distance. The interacting force is equal to Fc which bends the cantilever. This force is determined by δc depicted in panel (a).

repulsive force. Because the repulsive force F(D) is very
stiff, in the region near 3 in figure 4(b) the force curve is close
to a straight line. In a retracting process, the cantilever will
follow the trace from 3 to 4 producing a hysteresis loop. At
point δ, there is another abrupt change called jump-off-contact,
which means that the tip is separated from the sample surface,
all of a sudden. The curves in figure 4(b) are called force–
displacement curves hysteresis [3]. On the other hand, in the
case of a stiff cantilever (k is larger) the slopes of lines 1, 2,
3 and 4 are steeper. Then, abrupt change at β and δ will not
occur and no hysteresis will occur.

Hao et al suggested an analytical expression for force–
displacement curves [41]. The total potential Vtot is the sum of
three potentials: Vtot = Vts(D)+Vc(δc)+Vs(δs). Here, Vts(D) is
the interaction potential between the tip and the sample, e.g. the
Lennard–Jones potential. Vc(δc) and Vs(δs) are Hooke’s elastic
potentials of the cantilever and the sample surface, respectively.
The Hooke’s elastic potentials are described by

Vc(δc) = 1

2
kcδc

2,

Vs(δs) = 1

2
ksδs

2, (7)

where kc and ks are the cantilever and sample spring constants.
Typically, the attractive force F(D) = −∂Vts/∂D between the
tip and the sample can be written as a power law form:

F(D) = − C

Dn
, (8)

where C and n are parameters depending on the specific
shape and material properties of the tip and the sample.
As equation (8) takes into account the attractive part of the
interaction, it is valid for non-contact regions. Here, we want
to find the relationship between z and δc from equation (8).
Due to the static equilibrium condition, ksδs = kcδc, that is,

δs = kc

ks
δc. (9)

The above equation shows that one can determine δs from δc,
if kc and ks are known. In a state of equilibrium the forces are
balanced:

∂Vtot

∂δs
= ∂Vtot

∂δc
= 0. (10)

Since ∂Vcs/∂δs = −∂Vcs/∂D, because D = z − δc − δs, we
obtain

kcδc = C

(z − δc − δs)n
= C

(z − βδc)n
, (11)

where β = (1 + kc/ks). In equation (11), δc is a measurable
quantity by using the cantilever calibration process and z is a
controllable quantity. Therefore, the potential parameters C

and n can be estimated by using the experimental data of δc

and z.
For the system to be in stable equilibrium, ∂2Vtot/∂δc

2

should be larger than zero:

kc

β
>

nC

(z − βδc)n+1
, (12)

where kc/β is referred to as the effective elastic constant. If
the force gradient given by the right term in equation (12) is
larger than the effective elastic constant, the cantilever becomes
unstable and jump-to-contact occurs. From equations (11) and
(12) the cantilever deflection at jump-to-contact (δc)jtc and the
tip–sample distance Djtc can be determined:

(δc)jtc =
( C

(nβ)nkc

)1/(n+1)

, (13)

Djtc = βn(δc)jtc. (14)

By using equation (14), C and β can be estimated from (δc)jtc

and Djtc measured experimentally.
For instance, let us assume a tip–sample force F(D) =

−C2/D
2 +C3/D

3, in which the attractive part represents a van
der Waals interaction between a sphere (tip) and a flat surface
(sample). Typically, these parameters are C2 � 10−28 Nm2

and C3 � 10−38 Nm3 [42]. Figure 5(a) shows the force curve
of our trial force. When the cantilever tip approaches the
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Figure 5. (a) The force curve of a van der Waals interaction F(D) = −C2/D
2 + C3/D

3. (b) For kc = 0.2, 0.5, 2 and 6 N m−1, δc is
calculated numerically as a function of z, and the tip–sample interacting force Feq(D) in equilibrium state, is calculated by Feq(D) = −kcδc.

sample, the cantilever displacement δc can be estimated by
equation (10) assuming δs = 0 (D = z − δc);

kcδc − 10−28

(z − δc)2
+

10−38

(z − δc)3
= 0. (15)

For kc = 0.2, 0.5, 2 and 6 N m−1, δc is calculated numerically
as a function of z. Finally, the tip–sample interacting force
Feq(D) in an equilibrium state, is simply calculated by
Feq(D) = −kcδc, as shown in figure 5(b). In the case of a stiff
cantilever (kc = 6), the Feq(D) is single valued as a function
of z. However, in the case of a soft cantilever (kc � 2), δc has
three solutions in equation (15) in between the jump-to-contact
and the jump-off-contact points. When the tip is far from the
sample, δc is close to zero. As it approaches the sample beyond
the jump-off-contact point, δc has three possible values, among
which the smallest variation value is chosen. At the jump-
to-contact point, the δc changes abruptly, thereby ending the
three valued state. After the jump-to-contact point, Feq(D)

increases almost linearly, changing its polarity as shown in
figure 5(b). The polarity change shows the change from
attractive to repulsive interacting force. During the retracting
process, the tip follows the same trace as the approaching
trace, initially. However, at the beginning of the three valued
regions, the cantilever may choose the smooth change causing
hysteresis. Hysteresis will end at the jump-off-contact point.
As shown in figure 5(b), as the cantilever is softer, it creates
larger hysteresis. The relationship between hysteresis and the
spring constant is shown in figure 6. The (δc)jtc and (δc)joc are
calculated from ∂Vtot/∂δc = 0 and ∂2Vtot/∂δc

2 = 0. As shown
in figure 5(b), while a low stiffness cantilever (k � 0) has
large hysteresis, for stiff cantilever k > 6 N m−1 no hysteresis
appears.

As a result, a low stiffness cantilever has large bending and
high sensitivity as a force sensor, but it causes hysteresis. This
is a drawback for the detailed measurement of the tip–sample
force. On the other hand, the high stiffness cantilever does
not have hysteresis and its bending-distance data resemble the
force-distance curve, but its force sensitivity is low.

Figure 6. Jump-to-contact and jump-off-contact points versus
spring constant k. The (δc)jtc and (δc)joc are calculated from
∂Vtot/∂δc = 0 and ∂2Vtot/∂δc

2 = 0.

4. AM atomic force microscopy and spectroscopy

4.1. AM atomic force microscopy

As already mentioned, there are two different types of AFMs,
static AFM and dynamic AFM. As the cantilever of static AFM
remains static and it scans the sample being contacted to the
sample surface, it is also called contact mode AFM (C-AFM).
On the other hand, in dynamic AFM the cantilever is vibrated
by an actuator at its resonance frequency. As the tip is not
physically in contact with the sample, it is also called non-
contact AFM (NC-AFM). Martin et al [43] developed the NC-
AFM in 1987. AFM was operated with very small vibration
amplitude (below 1 nm) of the tip and its vibration amplitude
measured served as a feedback signal for topographic imaging.
After the invention of NC-AFM, Zhong et al [44] suggested
a modified AFM with large amplitude (>100 nm) of a stiff
cantilever (k = 40 N m−1). Their AFM is called tapping
mode AFM (or intermittent C-AFM), implying that the tip is
partially influenced by the repulsive force from the sample. It
is difficult to discriminate the NC-AFM and tapping AFM.
The terminologies are mixed in many commercial AFMs.
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In general, C-AFM has been used for force spectroscopy
measurement, because of its straightforward interpretation
of data analysis. However, if one uses NC-AFM for force
spectroscopy, there are crucial advantages; (1) improved force
sensitivity, (2) stable force measurements and (3) low thermal
offset noise. After it was developed by Martin et al [43],
the early NC-AFM measured the vibration amplitude of the
cantilever to estimate the tip–sample distance. A few years
later, a novel technique measuring its resonance frequency shift
was developed. The former is called amplitude modulation
(AM) AFM, and the latter is called frequency modulation (FM)
AFM.

For the excitation of the cantilever, piezoelectric devices
like PZT actuators or bimorphs are employed generally. The
PZT actuator is located between the cantilever Si chip and the
Z-actuator. Typically the PZT actuator is 1 mm thick having
∼1 nm vibration amplitude. With this small excitation, the
cantilever vibration can be amplified with ∼100 nm amplitude
due to its resonance. The resonance of the cantilever is
characterized by three different parameters: (1) amplitude,
(2) phase and (3) frequency. Among them, the amplitude
of the cantilever can be measured by using the peak-detector
or lock-in detection technique while fixing the excitation
frequency. When the AFM scans the sample, the amplitude
change is measured and used as a feedback signal to control
the amplitude. This scheme is called AM-AFM, in order to be
distinguished from FM-AFM.

Before we discuss the spectroscopy of AM-AFM, let
us briefly discuss the principle of the AM-AFM. It is well
known that the resonant responses are very sensitive to the
external perturbation with the frequency close to the resonance
frequency. The cantilever motion q in figure 3(b) can be
approximated by considering an equation of motion for a
1-dimensional point mass m attached at a spring;

mq̈ + kq +
mω0

Q
q̇ = Fts + F0 cos(ωt), (16)

where F0 and ω are the amplitude and angular frequency of the
sinusoidal driving force exerted by the actuator, respectively.
Q is the quality factor of the cantilever and ω0 is the angular
resonance frequency of the cantilever. For the sake of
simplicity, the subscript c is omitted in k.

4.1.1. Harmonic approximation. In the absence of tip–
sample interaction (Fts = 0), equation (16) represents the
model for the 1-dim force driven harmonic oscillator with
damping. The solution of this second derivative equation is a
function of ω. In order to consider asymptotic limits, consider
a limiting case: ω � 0 (static limit). In this case, q̈ and q̇

are close to zero, and kq � F0. This is the case discussed in
the previous section on static AFM. Another limit is ω � ω0,
where the q̈ term dominates and the response is determined by
inertia [4]. In this case, the motion of the cantilever is 180◦

out of phase with the excitation.
The general solution for this model is well known [45]:

q = A cos(ωt − φ) + Be−αt cos(ωrt + β), (17)

where ωr is the resonance angular frequency of the cantilever
influenced by the damping effect [46] and φ is the phase
difference between the driving force and the cantilever motion.
The first term is a steady solution and the second term is a
transient one. The transient term has exponential decaying
time dependence with a time constant 1/α = 2Q/ω0. This
time constant could be a significant parameter for a high Q-
valued cantilever. For example, in vacuum, the Q-value of
the cantilever may be increased by a factor of 10 compared
with that in air. The transient term 1/α fades out and q will
show sinusoidal behavior with an amplitude of A given by the
steady term. The amplitude A is dependent on the driving
frequency ω;

A(ω) = F0/m√
(ω2

0 − ω2)2 + (ωω0/Q)2
. (18)

The phase φ is also a function of ω;

tan φ = ωω0/Q

ω2
0 − ω2

. (19)

When ω = 0, ω0 and ∞, φ = 0◦, 90◦ and 180◦, respectively.
Especially, in case of on-resonance condition (ω = ω0), the
amplitude A0 is determined as

A0 ≡ A(ω = ω0) = QF0

k
. (20)

The resonance angular frequency with damping ωr is related
to the resonance angular frequency ω0 without damping;

ωr = ω0

√
1 − 1

2Q2
. (21)

Now, consider the tip–sample interaction potential as a
parabolic potential (∝q2). Then the force is proportional to
q, and the force gradient dFts/dq is constant. The force can
be written as

Fts =
(

dFts

dz

)
q + const. (22)

By inserting equation (22) into equation (16), one can
obtain the same differential equation with a modified spring
constant ke;

ke = k − dFts

dz
, (23)

which is called the effective spring constant. As a result, the
modified resonance frequency is simply

ω′ =
√

ke

m
=

√
k − (dFts/dz)

m
. (24)

In most cases, a weakly perturbed tip–sample interaction can
be approximated by the parabolic potential. The small change
in the resonance frequency can be calculated as equation (24).
By measuring the polarity of the frequency shift, one can
distinguish whether the interaction is attractive or repulsive
from equation (24). Figure 7 shows an illustration of the
relationship between frequency shift polarity and interaction

8
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Figure 7. Illustration of the relationship between the frequency shift
and interacting force direction. The x-axis is the angular frequency
of the driving force and the y-axis is the amplitude of cantilever
displacement. Attractive (repulsive) interacting force decreases
(increases) the resonance frequency of the cantilever.

polarity. The x-axis is the angular frequency of the driving
force and the y-axis is the amplitude of the cantilever
displacement q.

From equation (24), one notices that this model is not
the force, but the force gradient. One important point is
that no uniform force (dFts/dz = 0) causes frequency shifts
in harmonic approximation. The uniform external force
only changes the equilibrium point (D in figure 3(a)) of the
harmonic oscillator, which is not measured in NC-AFM.

4.1.2. Minimum Detectable Force. Let us estimate
the minimum detectable force gradient in harmonic
approximation. To have the maximum sensitivity of amplitude,
one would drive the cantilever with the frequency where the
A versus ω curve has the steepest slope in figure 7. The
angular frequency ωm at the maximum slope is given by
ωm � ω0(1±1/

√
8Q) [43]. At this point, the slope is given by

∂A

∂ω
= 4A0Q

3
√

3ω0

. (25)

For small force gradient dFts/dz, �ω = ω0(dFts/dz)/2k, and
an amplitude change �A is given by

�A = 2A0Q

3
√

3k

dFts

dz
. (26)

The dominant noise source on AM-AFM at room
temperature is the thermal fluctuation of the cantilever [43].
The thermal energy excites the cantilever on which vibration
amplitude is AT = √

2kBT/k. Its vibrational amplitude
noise N is measured with a bandwidth B, at a frequency ωm,
N = √

4kBT QB/kωm [47]. At a given temperature, it is not
possible to measure the amplitude smaller than the thermal
vibration amplitude. Therefore, the minimum detectable force
is determined by the thermal vibration. By equating N and
�A in equation (26), the minimum detectable force gradient
(dFts/dz)min is given as

(
dFts

dz

)
min

= 1

A0

√
27kkBT B

Qω0
, (27)

with an approximation ωm � ω0. From equation (27), it was
found that the spring constant k must be small and the Q value
and ω0 must be high to increase the sensitivity of AM-AFM.

Even though the harmonic model described above is
helpful for a conceptual understanding of the dynamic AFM
principle, in most cases the harmonic model fails to provide
quantitative agreement with the experimental data [4]. The
failure of the harmonic model stems from three assumptions:
(1) the tip–sample interaction does not transfer energy. (2)
The force gradient is independent of the tip–sample distance.
(3) The force gradient is much smaller than k. In most
experiments, at least one of these assumptions has been shown
to be invalid [4].

4.1.3. AM-AFM: damping effect. Anczykowski et al [51]
suggested a model to relate the cantilever vibration amplitude
and its damping effect. They assumed that the average
energy P in supplied by the actuator is equal to the energy
dissipation. The energy dissipation is a sum of the average
power dissipated by the motion of the cantilever P 0 and by
tip–sample interaction P tip;

P in = P 0 + P tip. (28)

The vibration of cantilever q(t) is given by the motion of the
external driver (Z-actuator) zd(t). Typically, |q(t)| � |zd(t)|,
because general cantilevers have a pretty high Q-value (Q >

102). P in can be simply calculated as

Pin = Fd(t)żd(t) = k[q(t) − zd(t)]żd(t). (29)

Considering a sinusoidal driving force zd(t) =
Ad cos(ωt), the deflection of the cantilever is also given by
a sinusoidal solution with a phase: q(t) = A cos(ωt − φ).
Now, one can calculate the average power driven by integrating
equation (29) over one period:

P in = 1

T

∫ T

0
Pin(t) dt = 1

2
kωAdA sin φ. (30)

On resonance, φ = 90◦ and P in has the maximum power.
Assuming a dissipative force F0 = b ˙q(t) with damping
coefficient b, the average power dissipated by the motion of
the cantilever P 0 can be written as

P 0 = 1

T

∫ T

0
|bq̇(t)q̇(t)| dt = 1

2
bω2A2. (31)

The damping coefficient b is related to the experimental
quantity Q-value as b = k/(Qω0). Combining equations (28),
(30) and (31), the tip–sample interaction dissipation P tip is

P tip = P in − P 0 = 1

2

kω

Q

[
QAdA sin φ − A2 ω

ω0

]
. (32)

Considering that the driving frequency ω is close to
the cantilever resonance frequency ω0 and the cantilever
oscillation amplitude A0 is amplified as A0 � QAd, the above
equation is simplified as follows:

P tip = 1

2

kω0

Q
[AdA sin φ − A2]. (33)

By using this equation, the power dissipation can be estimated
from the amplitude and phase changes of the cantilever.

9
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4.2. AM force spectroscopy

By measuring the amplitude change of the cantilever as
it approaches a sample and retracts, one can get a force–
distance curve, which is called AM-AFM spectroscopy. In
terms of experimental accessibility, AM-AFM is more easily
implemented than FM-AFM. But, in terms of theoretical
analysis, FM-AFM is more straightforward as shown in
harmonic approximation as equation (24). The FM-AFM is
well formulated and the tip–sample interaction potential can
be extracted from the theoretical formula, which is discussed in
section 5 [5,48]. On the other hand, a theory for tapping-mode
AM-AFM explaining the coexistence of two stable oscillations
was reported by Paulo and Garcia [57] and a general theory for
AM-AFM was developed by Lee and Jhe [50] who derived an
integral equation for amplitude in AM-AFM.

4.2.1. Theory for AM-AFM. The Lee and Jhe formalism
[50] starts with the harmonic oscillator model described by
equation (16) in section 3. Considering the damping coefficient
b = k/(Qω0);

mq̈ + kq + bq̇ = Fts + F0 cos(ωt). (34)

From the solution in equation (17), consider the steady
term with offset which could be caused by a constant external
force:

q(z, t) = q0(z) + A(z) sin[ωt + θ(z)], (35)

where the amplitude A(z) and the phase θ(z) are assumed to
be functions of z.

In general, Fts is a nonlinear function of the tip–sample
distance z, which contains both conservative Fc(z) and
dissipative (or non-conservative) Fnc forces.

Fts = Fc(z) + Fnc, (36)

where Fc is assumed to depend only on the distance z. One
can calculate the dissipation energy Edis caused by Fnc by
integrating the dissipation power over one period;

Edis =
∫ T

0
dt q̇Fnc, (37)

=
∫ T

0
dt q̇(mq̈ + kq + bq̇ − Fc − F0 cos(ωt)). (38)

By inserting equation (35) into equation (38), a general
dissipative energy equation is obtained;

Edis = −π(FA cos θ − bωA2). (39)

The same result on Edis was obtained by Anczykowski et al
[51] with a different approach, as shown in equation (33). The
above equation is always valid as long as the cantilever motion
is harmonic [50].

To analyze the cantilever motion in detail, we consider
the non-conservative force Fnc = −�(z)ż, where � indicates
the effective damping coefficient of the dissipative interaction,
which is a function of distance z. This non-conservative force
includes the van der Waals, electrostatic, capillary meniscus
forces. Equation (34) can be written as follows:

mq̈ + bq̇ + kq = Fc(z + q) + F0 cos(ωt) − �(z + q)q̇, (40)

where the tip–sample distance in right terms is given by the
instantaneous distance z + q, as shown in figure 3(b). In AM-
AFM experiments, z is controlled by the Z-actuator through
the feedback signal proportional to the instant change of the
amplitude q. Inserting equation (35) into equation (40),
multiplying both sides by sin(ωt + φ) and cos(ωt + φ) and
integrating over a period with an approximation |q0| 
 |z +
A sin(ωt + θ)|, two master equations are obtained as∫ π

0

dτ

π
Fc(z + A cos(τ )) cos(τ ) = −F

2
sin(θ) +

A

2
(k − mω2),

(41)∫ π

0

dτ

π
�(z + A cos(τ )) sin2(τ ) = 1

2

(
F

Aω
cos(θ) − b

)
,

(42)

where the amplitude A = A(z) and the integration over τ

is independent of z. From the master equations given by
equations (41) and (42), the amplitude and phase are estimated
numerically if Fc and � are known. Moreover, if the amplitude
and phase are measured experimentally, the interacting forces
Fc and � can be determined by using these master equations.
The integration form of the master equations can be inverted
as analytically accessible forms using Laplace transform of
certain functions C(λ) and γ (λ), respectively, as [48–50]

Fc(z) ≡
∫ ∞

0
dλe−λzC(λ), (43)

�(z) ≡
∫ ∞

0
dλe−λzγ (λ). (44)

Inserting equations (43) and (44) into equations (41) and (42),
the equations are changed as∫ ∞

0
dλC(λ)e−λzI1(λA) = F

2
sin(θ) − A

2
(k − mω2), (45)

∫ ∞

0
dλγ (λ)e−λz I1(λA)

λA
= 1

2

(
F

Aω
cos(θ) − b

)
, (46)

where I1(λA) is the modified Bessel function of the first kind
of order one, specifically

I1(λA) =
∞∑

k=0

(λA)2k+1

22k+1k!(k + 1)!
. (47)

With this Bessel function, the integral equations (45) and (46)
are changed into
∞∑

k=0

(λA)2k+1

22k+1k!(k + 1)!

d2k+1

dz2k+1
Fc(z) = −F

2
sin(θ) +

A

2
(k − mω2),

(48)
∞∑

k=0

A2k

22k+1k!(k + 1)!

d2k

dz2k
�(z) = 1

2

(
F

Aω
cos(θ) − b

)
, (49)

with the boundary conditions

dk

dzk
Fc(z) = dk

dzk
�(z) = 0 as z → ∞,

k = 0, 1, 2, . . . . (50)
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By numerical calculation of equations (48) and (49), the
exact solution of the tip–sample interaction can be determined
from the measurable amplitude and phase. Because the higher
order terms contribute less significantly, one can consider the
first few order terms k = 0, 1 and 2. For example, consider the
first order term k = 0 only. Then, one can obtain the following
equations:

F (1)
c (z) =

∫ ∞

z

dz

[
F

A
sin θ − (k − mω2)

]
(51)

�(1)(z) = F

Aω
cos θ − b. (52)

Notice that A and θ are functions of z in the above equations.
The force gradient of the tip–sample interacting force can be
obtained by differentiating equation (51), which is equivalent
to the elasticity of the sample or water meniscus adsorbed on
the sample [50]. The energy dissipation

Edis =
∫

period
(−�(1)ż) dz (53)

can be calculated from equation (52). In conventional
AM-AFM, the amplitude A is kept constant by a feedback
control, the simultaneously acquired phase θ provides the
information on energy dissipation.

4.2.2. Nonlinear behavior in amplitude versus distance curves.
Aime et al [52] reported a nonlinear dynamic behavior of the
cantilever using the variational method and the least action
law. They pointed out that for an oscillator set at a driving
frequency slightly below the resonance one, a bifurcation from
a monostable to a bistable state may occur [53]. In their
theoretical analysis, the variational method was used, which
is based on the principle of the least action law [52]. The
action S[x(t)] is a functional of the path x(t) and is extremal
between two fixed instants.

S[x(t)] =
∫ tb

ta

L(x, ẋ, t) dt, (54)

where L is the Lagrangian of the system. They considered
only harmonic solutions q(t) = A(z) cos[ωt − φ(z)] as Lee
and Jhe’s formalism does [50]. The Lagrangian is obtained
from a sphere tip and plane sample interaction [18],

L = T − U + W, (55)

= 1

2
mq̇2 −

[
1

2
kq2 − qF0 cos(ωt) − AHR

6(z − q)

]
− bqq̇,

(56)

where AH is the Hamaker constant, R the radius of the tip
and b the damping coefficient. In equation (56), the first
term is the kinetic energy of the cantilever, the second is
the potential energy of the cantilever, the third is the average
driving energy given by the Z-actuator, the fourth is the van
der Waals interaction of the sphere-plane model and the final
term is the dissipation energy of the cantilever. The action S

has two parameters A and φ. The variational principle gives
two differential equations:

∂S

∂A
= 0, (57)

∂S

∂φ
= 0. (58)

From the above equations, two coupled equations were
obtained;

cos φ = Qa(1 − u2) − α

3

a

(d2 − a2)3/2
, (59)

sin φ = au, (60)

where a = A/A0, d = z/A0, u = ω/ω0, Q is the quality
factor and the dimensionless parameter α = HRQ/(kA3

0).
By solving equations (59) and (60), the relation between the
amplitude and the distance is obtained;

d± =

√√√√
a2 +

(
α

3[Q(1 − u2) ±
√

1/a2 − u2]

)2/3

. (61)

From the above equation, u can be obtained in closed form;

u =
(

1

a2
−

[
1

2Q

(
1

±
√

1 − 4Q2

(
1

a2
− α

3Q(d2 − a2)3/2

))]2
1/2

. (62)

Because A is kept constant close to A0 for AM-AFM
measurement in general, the resonance frequency shift is
obtained assuming a � 1;

�f

f0
= 1 − u = 1 −

√√√√1 −
(

1 +
√

1 + 4Qα/3(d2 − 1)3/2

2Q

)2

.

(63)

From equation (62), the cantilever frequency spectra can be
obtained because the tip is close to the sample. For instance,
when a high Q-valued cantilever (Q = 2 × 104) is close to the
sample, but not touching it (z = 1.02A0), the spectrum changes
with different spring constants. (k = 1, 10 and 100 N m−1) are
shown in figure 8, where AHR = 10−27 J m. While for the stiff
cantilever (k = 100) spectrum distortion is not significant, for
a soft cantilever with k = 1 there is a significant distortion
of the spectrum. For example, if one chooses the excitation
frequency f � f0, there are two possible amplitudes (high and
low states) which can be interpreted as a bifurcation starting
point of chaotic phenomenon [52]. Figure 9 shows the spectra
with different tip-sample distances (d = z/A0 = 1.01, 1.05
and 2.00), where Q = 2 × 104, AHR = 10−27 J m and
k = 10 N m−1. Similarly to the behavior for the soft spring
constants, the close tip–sample distance results in the bistable
state.

Experimentally and theoretically, this bistable state was
reported in several works [4, 54–57]. Moreover, in some
specific conditions such as small tip–sample distance and large
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Figure 8. Cantilever frequency spectra calculated from
equation (62). When a high Q-valued cantilever (Q = 2 × 104) is
close to the sample (z = 1.02A0), the spectra with different spring
constants (k = 1, 10 and 100 N m−1) are shown, where
AHR = 10−27 J m. For a soft cantilever k = 1, the original
Lorentzian spectrum is distorted significantly.

Figure 9. The spectra with different tip-sample distances
(d = z/A0 = 1.01, 1.05 and 2.00) under the condition of
Q = 2 × 104, AHR = 10−27 J m and k = 10 N m−1.

amplitude, more than two or chaotic solutions were obtained
[58, 59].

Moreover, Lee and Jhe formalism results in similar
bistable behavior with hysteresis [50]. The hysteresis in the
force–distance curve was found by numerical calculation to
demonstrate the validity of formalism. The Lennard–Jones-
type force was adapted consisting of z−6 repulsive and −z−2

attractive terms [48, 47].

Fint = F0

(
l4

3z6
− 1

z2

)
, (64)

where F0 is a constant representing force strength and l is
the characteristic length representing force range. Inserting
equation (64) into equations (41) and (42) and solving them
numerically, the amplitude and phase curves were obtained
as shown in figure 10. Figures 10(a), (c) and (e) show the
amplitude changes, while (b), (d) and (f ) show the phase

changes for different free amplitudes A0 with F0Q/(l3k) =
5. In figure 10(a), (c) and (e), the x and y-axes represent
the normalized tip–sample distance z/l and amplitude A/l,
respectively. In particular, for regions (surrounded by
A–B–C–D) of z/l, there are three solutions of A/l, consisting
of two stable (AB, CD) and one unstable (BD) states. For
instance, figure 10(a) displays the amplitude behavior for
the amplitude–distance curve. When the tip approaches the
sample, increasing attractive force causes a decrease of the
amplitude A. Through point A in figure 10(a), the amplitude
follows the lower branch before point B. At the point B, the
amplitude jumps to the upper stable point C, and follows the
trace to the left. It is noticeable that as the tip is close to the
sample (z/l < 1), the amplitude A becomes almost zero. In
the retracting process, the amplitude follows the upper trace
(C → D → A), producing hysteresis behavior. However,
hysteresis does not occur for the small amplitude cantilever,
as shown in figure 10(e), where A0/l = 0.1. Therefore, the
bistable or hysteresis behavior in the large amplitude case may
be related to the cantilever motion vibrating between the jump-
to-contact and jump-off-contact points as described in static
AFM. In this case, very sensitive behavior for A and the phase
are shown at z/l � 1. The phase change shows a dramatic
transition from hysteresis behavior to monotonic dependence
at z/l � 1 as shown in figure 10(b), (d) and (f ). Especially,
one can get very sensitive and linear feedback control by using
the phase signal under the condition of A0/l � 0.1 in the
repulsive region. This is shown in figure 10(f ).

Lee and Jhe also demonstrated the accuracy of their
formalism by reconstructing the tip–sample interaction forces
from the approach curves shown in figure 10. They chose
the data of A and phase from z = ∞ to z = 0 following
the path ∞ → A → B → C → 0 and numerically
calculated the Fc using equation (48) up to 3rd order (k =
0, 1 and 2). The resulting forces (dotted lines) are shown
in figure 11(a)–(c) with the assumed force (solid line) in
equation (64). Figures 11(a)–(c) correspond to A0/l =
1, 0.8 and 0.1, respectively. The first order solution is
obtained from equation (51) and the second and third order
solutions are given by numerical integration in equation (48).
As shown in figures 11(a)–(c), the reconstructed forces up
to the higher order term show better agreement with the
original Lennard–Jones force. Especially, in the case of
small amplitude A0/l = 0.1, only first order approximation
solution is good enough to reconstruct the original
force.

In order to figure out the tendency of the accuracy as a
function of λA in equation (47), the polynomials P1, P2, P3

and I1 are depicted in figure 11(d), where Pn is the sum of the
terms from k = 0 to k = n−1 in the right hand of equation (47).
As shown in figure 11(d), in the case of small amplitude
λA < 1, P1 and I1 are very close, while the difference between
P1 and I1 grows as λA increases. Therefore, to obtain an
accurate estimation for large amplitude, inclusion of higher
order polynomial terms is required.
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Figure 10. For the Lennard–Jones-type force, the amplitude and phase curves were calculated numerically. (a), (c) and (e) show the
amplitude changes and (b), (d) and (f ) show the phase changes for different free amplitudes A0, with F0Q/(l3k) = 5. Reprinted figure with
permission from [50]. (http://link.aps.org/abstract/PRL/v97/p036104) Copyright (2006) by the American Physical Society.

Figure 11. (a)–(c) Numerical calculations of the Fc using equation (48) up to 3rd order (k = 0, 1 and 2). From the data of A and phase from
z = ∞ to z = 0 (∞ → A → B → C → 0), forces (· · · · · ·) are calculated. The assumed force (——) in equation (64) is shown together.
(a)–(c) correspond to A0/l = 1, 0.8 and 0.1, respectively. (d) shows the polynomials P1, P2, P3 and I1. While for small amplitude λA < 1
P1 and I1 are very close, the difference between P1 and I1 grows as λA increases. Reprinted figure with permission from [50]. Copyright
(2006) by the American Physical Society.
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5. FM atomic force microscopy and spectroscopy

5.1. FM atomic force microscopy

The time constant (1/α = 2Q/ω0) of the amplitude as shown
in equation (17) is excessively long for a vacuum and low-
temperature environment. These conditions are essential for a
high sensitivity measurement. This is a critical disadvantage
for AM-AFM. The inverse of the time constant determines
the bandwidth of the AFM operation. Typically, in vacuum,
the quality factor Q is increased up to ∼105 and the resulting
bandwidth will be lower than ∼1 Hz. This means the 256×256
pixel imaging will take roughly one day. In order to overcome
the long time constant problem, the frequency modulation
(FM) mode AFM was developed. The response time of the
frequency change is as short as a single oscillation period [5].

In order to provide fast scanning ability with a high Q-
valued cantilever, the FM-AFM was developed by Albrecht
et al [60]. Figure 12 shows the original diagram of the
FM detection electronic circuit. The circuit consists of two
main parts: active oscillator and FM demodulator as indicated
in dashed boxes in figure 12. The active oscillator excites
the cantilever to vibrate it with its resonance frequency, by
using positive feedback of the oscillation. The cantilever is
mounted on a vibrator such as a bimorph. The vibrator is
excited by an electric ac-voltage and its mechanical motion
is transmitted to the cantilever vibration. If the frequency
of the excitation voltage is close to the cantilever resonance
frequency, the mechanical motion of the cantilever is amplified,
which is detected by a quadrature photo diode or the phase
sensitive photo diode (PSPD). The amplitude of the PSPD
ac-signal is held constant by an automatic gain controller
(AGC). To suppress noise, a bandpass filter passing signals
with frequency range near the resonance frequency is added.
After the phase is adjusted through a phase shifter, the resulting
signal is fed into the bimorph. With proper phase control,
the cantilever is oscillated due to the positive feedback. This
active oscillator is supposed to oscillate the cantilever with its
resonance frequency and constant amplitude.

The FM demodulator depicted in the lower box in
figure 12 detects the frequency change of cantilever resonance
frequency. By the limiter the amplitude of the PSPD signal is
limited to a certain value, and the phase detector measures the
phase difference between the limiter and LC resonator outputs.
The phase detector generates dc voltages proportional to the
frequency of the cantilever. The threshold detector is used to
provide a pullback signal to protect the cantilever or tip when
the PSPD outputs abnormal signals with low amplitude. The
resulting frequency shift signal is fed into a high voltage (HV)
amplifier to provide the feedback signal to the Z-directional
piezo scanner.

Recently, instead of using the FM demodulator, a phase-
locked loop (PLL) has been employed for FM-AFM [17, 61,
62]. As shown in figure 13, the PLL consists of a voltage
controlled oscillator (VCO) and a phase detector. The VCO
generates a reference signal (Vout) in which frequency is
controlled by input voltage. Vout is fed into the actuator to
excite the cantilever and the phase change of the PSPD signal
is compared with the phase of Vout by the phase detector. The

phase change is caused by the frequency change affected by
the tip–sample interaction. The phase signal is fed into VCO
input as a feedback signal after the high frequency noise is
filtered out by a low pass filter. Atia and Davis [61] used an
active oscillator circuit to vibrate the cantilever and an external
reference signal was applied to measure the phase shift of the
cantilever, rather than using the VCO.

5.1.1. Stability. As discussed in section 3, the soft cantilever
jump-to-contact in the attractive force region. For non-
contact AFM, the cantilever should not jump-to-contact. This
condition is [5]

k > max

(
−∂2Vts

∂z2

)
= kmax

ts , (65)

where kts is the interacting force gradient. On the other hand,
even for soft cantilevers, jump-to-contact instability can be
avoided by increasing vibration amplitude [21]:

kA > max(−Fts) = F max
ts . (66)

5.1.2. Theories for FM-AFM. As discussed in the
previous section, harmonic approximation provides an
intuitive understanding of the relationship between frequency
shift and tip–sample interaction described in equation (24).
The first order approximation of equation (24) is given by

�f � −f0
kts

2k
, (67)

where the force gradient kts = ∂Fts/∂z. Harmonic
approximation is only applicable for a small amplitude
vibrating cantilever because it is based on the assumption that
the distance dependence of the force is linear in the range of the
cantilever motion. However, general commercial AFM has an
amplitude larger than 100 nm, which is much larger than force
range such as van der Waals force, short-range electrostatic
force or chemical force. Thus, harmonic approximation can
be applied for long range forces only (i.e. magnetic force
microscopy) rather than short-range forces.

Giessibl suggested the relationship between frequency
shift and interacting force by using a Hamilton–Jacobi method,
firstly [21]

�f = − f0

kA2
〈Ftsq〉, (68)

where 〈. . .〉 means the average of the argument over a period.
The same result was derived by other methods such as in
the canonical perturbation-theory [63–67], and Fourier series
method [66, 68].

Among them, the Fourier series method will be discussed
to derive equation (68). This method starts from the simplified
equation of motion ignoring the damping and driving force
terms in equation (34):

mq̈ = −kq + Fts. (69)

The cantilever motion is assumed to be harmonic and its
Fourier series is given by

q(t) =
∞∑

n=0

an cos(nωt). (70)
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Figure 12. Schematic design of the FM-AFM detection electronics. The circuit consists of two main parts: active oscillator and FM
demodulator as indicated in the boxes. The active oscillator excites the cantilever with resonance frequency by using positive feedback from
the oscillation.

Figure 13. Schematics of a PLL based FM-AFM setup. The PLL consists of a VCO and a phase detector. The VCO generates a reference
signal (Vout) of which frequency is controlled by its input voltage. Vout is fed into the vibrator and the phase change of the PSPD signal is
compared with the phase of Vout by the phase detector.

By inserting equation (70) into equation (69), the Fourier
components are determined:

∞∑
n=0

an[−(nω)2)m + k] cos(nωt) = Fts(z + q). (71)

By multiplying by cos(n′ωt) and integrating over a period, and
replacing n′ by n, an is given as

an[−(nω)2)m + k]π(1 + δn0) = ω

∫ T

0
Fts(z + q) cos(nωt) dt.

(72)

Ignoring the higher order terms, the cantilever motion can
be approximated as q(t) � A cos(ωt), which corresponds
to the case of n = 1. The frequency can be written as
f = f0 + �f = ω/(2π), where f0 = (1/2π)

√
k/m.

Assuming that |�f | 
 f0, the first order term is given by

�f = − f0

kA

∫ T

0
Fts(z + q) cos(ω0t) dt (73)

= − f0

kA2
〈Fts(z + q)q〉. (74)
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Table 1. γ1A and
√

VtsFts for three different types of tip–sample interacting forces. �(n) represents the Gamma function. Adapted from [4].

Type Fts(z) γ1A

√|VtsFts|

Inverse power C
zn

1√
2π

�(n − 1/2)

�(n)

C

dn−1/2

1√
n − 1

C

dn−1/2

Power C(−z)m
1√
2π

�(m + 1)

�(m + 3/2)
C(−d)m+1/2 C√

m + 1
C(−d)m+1/2

Exponential F0e−κz
1√
2πκ

F0e−κd 1√
κ

F0e−κd

The above equation is a central equation for FM-AFM
analysis, which provides good approximation especially for
large amplitude measurement.

5.1.3. Small amplitudes. In many cases, tip–sample
interacting force can be described by an inverse power law
(e.g. van der Waals interaction):

Fts = − C

zn
. (75)

By inserting equation (75) into equation (74), the frequency
shift is given by

�f = 1

2π

f0

kA0

C

dn

∫ 2π

0

cos x

[1 + (A0/d)(cos x + 1)]n
dx, (76)

where d = z−A0 is the minimum distance between the sample
and the tip as depicted in figure 3(b). Because of A0 
 d, the
above equation can be approximated with the Taylor expansion
for the integration function. Therefore,

�f � −n
f0

2k

C

dn+1
= f0

2k

∂2Vts

∂z2

∣∣∣
z=d

. (77)

This result is identical to the result for harmonic
approximation, equation (67) [21].

5.1.4. Large amplitudes. In the case of a large amplitude
cantilever (A0 � d), most tip–sample interaction occurs at a
minimum distance between the tip and the sample (at x � π in
equation (76)) and cos x can be approximated as −1+(x−π)2

in the vicinity of x = π . Ignoring 1 in the denominator in
equation (76)), the frequency shift is given as

�f � − 1√
2π

f0

kA
3/2
0

C

dn−1/2

∫ ∞

−∞

1

(1 + y2)n
dy, (78)

where y = √
A0/2d(x − π). In the above equation, all

the terms except f0/(kA
3/2
0 ) are not strongly dependent on

k, A0 and f0. For all inverse power law and exponential
decaying forces, �f is proportional to f0/(kA

3/2
0 ). Therefore,

a normalized frequency shift can be defined as

γ (d) ≡ kA
3/2
0 �f

f0
. (79)

γ (d) is not dependent on the external parameters such as
the amplitude, spring constant and resonance frequency of

the cantilever. It represents the intrinsic contribution of the
tip–sample interaction. From equation (74), one can get the
normalized frequency shift

γ (d) = 1√
2π

∫ 2A0

0

Fts(d + z′)√
z′

1 − z′/A0√
1 − z′/2A0

dz′, (80)

where z′ ≡ A0[1 + cos(ω0t)]. In this expression γ (d) still
depends on A0. However, for the large amplitude limit, A0 →
∞, the second factor in the integration can be approximated
as unity [69] and an additional approximate form for the
normalized frequency shift γ1A is given by

γ1A = 1√
2π

∫ ∞

0

Fts(d + z′)√
z′ dz′. (81)

Even though γ1A is given in simple form, it provides a
good approximation especially for a large amplitude cantilever
AFM. For various types of tip–sample forces, γ1A was
calculated as shown in table 1 [69]. While the inverse power
law dependence in table 1 corresponds to an attractive force
(e.g. van der Waals potential, electrostatic and magnetic forces)
in the range d > 0, the power law forces describe repulsive
force in the range d < 0. This includes Hertzian contact forces
with m = 3/2 for a spherical tip on a flat surface and adhesion
forces with m = 0 [3, 18].

On the other hand, Ke et al [70] performed a numerical
calculation for Si surface with a Si tip, by using the Lennard–
Jones potential and the Morse potential. Their approach
is based on the energy conservation law for an oscillating
cantilever with a large amplitude. They found that the
frequency shift �f for a large amplitude is proportional to√|VtsFts| in the non-contact region. For small amplitudes,
�f is proportional to Fts. A similar result was reported by
Giessibl and Bielefeld [69] for a large amplitude AFM. Ke et al
defined a force range or decay length λ = Vts/Fts. For instance,
in the case of exponential decaying force Fts = F0 exp(−κq),
the force range is given by λ = 1/κ . In their approximation,
the frequency shift is given by γ1A � Fts

√
λ. In table 1, the

force ranges are shown for different types of forces.
√|VtsFts|

is the same as
√

2πγ1A.

5.2. FM force spectroscopy

By using FM-AFM, not only the topographic imaging, but also
the force between the tip and the sample can be measured as
a function of distance. After Lantz et al’s [75] remarkable
research on the site dependent chemical force analysis using
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FM-AFM, FM force spectroscopy has been used for the
study of an atomic structure even with sub-atomic spatial
resolution [76]. Hölscher et al [77] studied the measurement
of conservative and dissipative tip–sample interaction forces
with the FM-AFM. They found that the frequency shift is
determined by the mean tip–sample force whereas the gain
factor of the self-driven oscillator is related to dissipative or
viscous interaction.

5.2.1. Separation of interactions. Experimentally, the
measured frequency shift may include more than two different
interactions, and the forces can be separated by frequency shift-
distance measurement using FM-AFM. The total force is the
vector sum of different forces, e.g. Ftot = Fel + FvdW + Fchem,
where Fel is the electrostatic force FvdW is the van der Waals
force and Fchem is the chemical force. The total force can be
written as

Ftot = −πε0U
2 R

z
− AH

6

R

z2
− 2κEbonde−κ(z−σ), (82)

where U is the voltage difference between the tip and the
sample. In the last Morse potential term, the repulsive
component was not included, assuming that the tip does not
touch the sample in the non-contact AFM. By using table 1,
one can calculate the normalized frequency shift γ1A, as a
summation of each contribution:

γ1A = −πε0U
2 R

(
√

2z)1/2
− AHR

12
√

2z3/2
−

√
2Ebond√

πκ
e−κ(z−σ).

(83)
Using the above equation, one can separate forces from the
mixed frequency–distance curve. In log–log plot for the
frequency–distance curve, the electrostatic force yields −0.5
slope and the vdW yields −1.5. Guggisberg et al [71]
reported the separation of interactions from the frequency–
distance curve measured by FM-AFM in UHV condition.
From their frequency–distance curve, long-range electrostatic
interaction was eliminated by applying null potential voltage U

between the probing tip and the sample. The long-range vdW
contribution was determined by fitting the data for distances
ranging from 1 to 6 nm. After the vdW contribution was
subtracted from the interaction curves, the remaining part
corresponded to the short-range chemical interaction. The
chemical interaction was found to decrease exponentially,
which fitted the Morse potential. As a result, the chemical
force between single atoms was measured by FM-AFM.

5.2.2. Fourier expansion and variational approach. In
equation (72), all Fourier coefficients an with n �= 1 are
small compared with the amplitude of the harmonic term a1.
Here, the tip–sample interaction is weak. In the integrand
of equation (72) z + q = z +

∑∞
k=0 ak cos(kωt) can be

approximated as d +a1(1+cos ωt) (refer to figure 3(b)). Then,

an = 1

π(1 + δn,0)

ω2
0

k(ω2
0 − n2ω2)

×
∫ T

0
Fts[d + a1(1 + cos ωt)] cos(nωt)ω dt. (84)

For n = 0, the Fourier components a0 corresponds to the
average deflection of the cantilever in its equilibrium position,
as shown in static AFM (δc in figure 3(a)):

a0 = 1

2πk

∫ T

0
Fts[d + a1(1 + cos ωt)]ω dt,

= 1

2πk

∫ 2π

0
Fts[d + a1(1 + cos φ)] dφ. (85)

Typically, for a stiff cantilever used in non-contact AFM,
k is larger than 10 N m−1 and a0 has an insignificant value
� 0.01 Å [4]. For n = 1, one can get the same result as
equation (74) by using that a1 = A and

ω2
0 − ω2

ω2
0

� −2
�ω

ω0
= −2

�f

f0
. (86)

For anharmonic terms (n > 1), an can be obtained by
changing variable with u = cos(ωt) in the integration:

an = 1

2π

2ω2
0

k(ω2
0 − n2ω2)

∫ 1

−1
Fts[d + a1(1 + u)]

Tn(u)√
1 − u2

du,

(87)
where Tn(u) = cos(n cos−1(u)) is the nth Chebyshev
polynomial of the first kind [4, 67]. Specifically, the
polynomials are T0 = 1, T1 = u, T2 = 2u2 − 1 and
T3 = 4u3 − 3u, and its recursion relation is given by Tn+1 =
2uTn − Tn−1. For n = 1 in equation (87), one can obtain the
frequency shift

�f (d) = f0

πka1

∫ 1

−1
Fts[d + a1(1 + u)]

u√
1 − u2

du. (88)

It is noticeable that the term (1−u2)−1/2 weights the tip–sample
interacting force in the integration over a period. This kernel
has two singularities at the turning points (u = cos π = ±1).
This can be explained by the fact that the velocity of the
cantilever slows at the turning points. Therefore, the large
amplitude sinusoidal motion of the cantilever can be sensitive
to the interacting force which is exerted only at the lowest point
(u = −1) of the motion.

5.2.3. Inversion procedure. From equation (88), the effective
force gradient can be defined as keff

ts = 2k�f/f0, which can
be written as

keff
ts (d) = 2

πA2

∫ d+2A

d

Fts(s)K1

(
s − d

A
− 1

)
ds ≡ A(Fts),

(89)
by changing variable s = d + a1(1 + u), where K1 =
u/

√
1 − u2, A = a1 and A is an operator defined in this

equation. a1 can be written as amplitude A, because a1 is the
Fourier component of harmonic term, K1 is a kernel weakly
divergent at u = ±1. s is the instant distance between the
tip and the sample and d the closest distance in a cycle of the
cantilever oscillation. In order to get a closed form for Fts(s),
the kernel K1 is approximated by the leading divergent term in
the vicinity of u = −1, K1(u) � 1/[2(1 + u)]1/2. The upper
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integration range d + 2A can be approximated as infinity for
large amplitude limit. The resulting approximated equation is

keff
ts (d) =

√
2

πA3/2

∫ ∞

d

Fts(s)√
s − d

ds ≡ B(Fts), (90)

where B is another operator defined here. The inverse operator
of B(Fts) is known as [67]

Fts = B−1(keff
ts ) = −A3/2

√
2

∫ ∞

s

(d/dq)keff
ts (q)√

q − s
dq, (91)

where the integration variable d was replaced by q to avoid
possible confusion.

By using equation (91), the tip–sample interacting force
can be calculated from the experimentally measured frequency
shift data keff as a function of distance. As mentioned
previously, this approximation is valid for a cantilever having
a large amplitude. Typically, in the case of a micro-machined
cantilever, the amplitude A is of the order of 100 nm and
the tip–sample force is ∼1 nm. In this case, equation (91)
provides a good estimation. However, in the case of the
quartz crystal resonator cantilever (e.g. tuning fork) [13,16,32]
A ∼ 1 nm, and further correction procedures are required.
Dürig calculated the accuracy of his inversion method for the
Lennard–Jones type potential (Fts(d) = F0(l

4/3d6 − 1/d2)),
where l is a measure of the force range [73]. While for A � l,
equation (91) the equation works very well, for l < A < 10l it
yields inaccurate results. As a correction method, he suggested
an iterative approach. It starts with the measured frequency
shift keff

ts (d) = 2k�f/f0 and B−1 in equation (91) yields first
approximate force F 0

ts. By operating A(F 0
ts) in equation (89),

one gets the first corrected effective force gradient k
eff,0
ts (d).

The inaccuracy keff
ts (d) − k

eff,0
ts (d) is taken as a new argument

in the approximate inversion operator B−1 to calculate a force
correction �Fts:

�Fts = B−1(keff
ts (d) − k

eff,0
ts (d)). (92)

This procedure can be repeated until �Fts is reduced within
the required accuracy. For the Lennard–Jones type potential,
two iterations are enough to achieve 99% accuracy for the
large amplitude limit. For A = l, 10 iterations give 99%
accuracy [73].

6. Atomic imaging

6.1. Atomic image in semiconductor

While the STM unveiled the Si(1 1 1) 7 × 7 structure earlier,
a similar image with AFM was obtained by Giessibl with
a non-contact AFM in vacuum [35]. Figure 14(a) shows
a representative FM-AFM image for the Si(1 1 1)- 7 × 7
reconstruction [72]. The set-point of the frequency shift
�f = −28 Hz, the amplitude A0 = 164 Hz and the scan
area 8.9 × 8.9 nm2. The unit cell of 7 × 7 structure is guided
by solid (faulted) and dashed (unfaulted) triangles. The line
profile is shown in figure 14(b) along the line in figure 14(a).
In a unit cell of Si 7×7, there are 12 protrusions (adatoms) and

Figure 14. (a) FM-AFM image of the Si(1 1 1) 7 × 7
reconstruction. The set-point of the frequency shift is
�f = −28 Hz, the amplitude A0 = 164 Hz and the scan area
8.9 × 8.9 nm2. The unit cell of 7 × 7 structure is guided by solid
(faulted) and dashed (unfaulted) triangles. (b) The line profile is
shown along the line in (a). Reprinted figure with permission
from [72]. (http://link.aps.org/abstract/PRB/v56/p9834) Copyright
(1997) by the American Physical Society.

a deep depression (corner hole). This structure is reconstructed
on the surface of Si(1 1 1) due to the spontaneous interactions
among Si atoms. The reconstructed structure on the surface is
different from the Si crystal structure. The number ‘7’ means
the side length of equilateral triangle in figure 14(a), in the unit
of atomic spacing of the internal crystal structure. The dimer-
adatom-stacking fault (DAS) model is generally accepted for
an explanation of this structure [74]. The model consists of 12
adatoms arranged locally in the 2 × 2 structure, nine dimers
on the sides of the triangular subunits of the 7 × 7 unit cell and
a stacking fault layer.

Lantz et al [75] measured the force of a chemical
bond between Si atoms, quantitatively. The experiment was
performed using a low-temperature AFM, a Si tip and a Si
(1 1 1) 7 × 7 sample. From the raw data of the force–distance
curves on corner hole and adatom, the vdW background
force (FvdW = −AHR/6z2, where AHR = 9.1 × 10−28 J m)
was eliminated and the short-range chemical bonding force
between the adatom in the sample and an atom on the tip
was extracted. The force on the adatom estimated from
Dürig’s inversion procedure was an attractive short-range force
with a maximum value of −2.1 nN, which agreed with the
first-principle calculation of a covalent bond. With their
high resolving power, different interaction potentials from
inequivalent adatom sites could be distinguished.

For the III–V semiconductor, Sugawara et al [78, 79]
imaged the atoms of the InP(110) surface using UHV condition
FM-AFM at room temperature. With their UHV AFM, atomic
resolution imaging of the cleaved semi-conducting InP(1 1 0)
surface was achieved. Also, atomic-scale point defects and
motion were observed at room temperature.
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Schwarz et al [80] reported an atomic-scale study on
in situ cleaved InAs(1 1 0) using a dynamic mode AFM at
low temperatures. The AFM image showed high protrusion
on the As atoms, where the valence charge density was at its
maximum. Occasionally, the In atoms appeared depending
on the tip condition. They observed protrusions as well as
depressions at the position of the In atoms. This was attributed
to the role of the charge rearrangements induced by the specific
electronic structure of the tip. Point defects of As and In atoms
were investigated. The observed point defect as a missing
protrusion implied the existence of an As vacancy. Another
point defect was a vacancy, which was detected indirectly by
its influence on two neighboring As atoms.

Recently, Sugimoto et al [99] reported a method for
chemical identification of individual surface atoms by using
force spectroscopy with a home-built FM-AFM. By measuring
short-range chemical force for individual atoms at room
temperature, they found that the different atoms exert different
strengths of chemical forces. An alloy sample was prepared,
which was composed of Si, Sn and Pb atoms blended in equal
proportions on a Si(1 1 1) substrate. As shown in figures 15(a)
and (b), a topographic image and height distribution of the
atoms show that Pb atoms with neighboring Si atoms appear
indistinguishable only from their topographic information.
However, the force spectroscopic measurement shows a clear
discrimination of the atoms. The local chemical composition
shown in figure 15(c) of the topography was colored by
blue, green, and red atoms corresponding to Sn, Pb and
Si, respectively, according to the distribution of maximum
attractive forces measured by force spectroscopy shown in
figure 15(d). In order to corroborate their result, a similar
measurement was performed on the other region of the sample
where some Pb atoms are almost completely surrounded by
Si atoms. Figures 15(e) and (f ) show the topographic image
and the atomic height distribution histogram. In this case,
the Pb atoms are almost indistinguishable from the Si atoms.
The force spectroscopy measurement shows unambiguous
discrimination of each surface atom, as shown in figure 15(g)
and (h). The image size of figures 15(a), (c), (e) and (g) are
4.3 × 4.3 nm2.

6.2. Atomic image in ionic crystal

Representative ionic crystals include alkali halides and oxides
which consist of cation and anion (halogen or oxygen ions).
The cation and anions have closed electron shells and attract
each other by electrostatic Coulomb force. For the ionic crystal
imaging, there is no significant contribution of dangling-bond
covalent interaction because of the closed-shell electronic
structures of the ions [4]. Therefore, the dominant interacting
force yielding the atomic resolution is the electrostatic force
exerted by the ions.

Bammerlin et al [81] used an FM-AFM with A0 = 13 nm
to study alkali halide surfaces. The (0 0 1) cleavage faces of
NaF, RbBr, LiF, KI and NaCl were atomically resolved in UHV
at room temperature. The observed lattice periods were equal
to the bulk lattice constant of equally charged ions. The mean
atomic corrugation was comparable to the difference between
the anion and cation ionic radii.

Figure 15. (a) Topographic image and (b) height distribution of Pb,
Sn and Si atoms. The Pb and Sn atoms are indistinguishable from
topographic information. (c) The local chemical composition was
colored by green, blue and red atoms corresponding to Pb, Sn and
Si, respectively, and according to (d), the distribution of maximum
attractive forces measured by force spectroscopy. (e) Topographic
image and (f ) height distribution of Pb, Sn and Si atoms are shown.
(g) The local chemical composition and (h) the distribution of
maximum attractive forces show clear segregation of the atoms. The
scan size for (a), (c), (e) and (g) is 4.3 × 4.3 nm2. Reprinted by
permission from Macmillan Publishers Ltd: Nature [99], copyright
(2007).

Fukui et al [82] imaged the TiO2(1 1 0)-(1 × 1) surface
with atomic resolution by FM-AFM in UHV. In contrast to the
STM result, outermost atoms of bridge-bound oxygen ridges
were observed. With the high resolution imaging, it was found
that the bridging oxygen atoms ordered in (1×1) periodicity
on terraces. Point defects of oxygen atoms were also imaged
as dark spots.

Foster et al [83] obtained an atomic resolution image
of the CaF2 (1 1 1) surface with dynamic mode AFM. Both
experiments and theory showed a clear triangular pattern. The
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Figure 16. Atomic resolution FM-AFM images of HOPG (0 0 0 1). (a) The experimentally obtained images in UHV at T = 22 K. (b) The
line profile of the experimental image along the line in (a). (c) The theoretically obtained image by using a simulation of the LJ potential.
(d) The line profile of the simulated image along the line in (c). Reprinted figure with permission from [86].
(http://link.aps.org/abstract/PRB/v62/p6967) Copyright (2000) by the American Physical Society.

theory demonstrated that the contrast pattern is caused by the
interaction of a positive electrostatic potential tip with fluorine
ions in the two topmost layers. They found that the position
and the relative height of the line profile measured agreed
with theoretical expectations. Their atomic resolution images
established unambiguous identification of the sublattices of an
insulator.

6.3. Atomic images of HOPG and inert gases

Allers et al [84] imaged atoms in highly oriented pyrolytic
graphite (HOPG) surface (0 0 0 1) using low-temperature
FM-AFM. They pointed out that low-temperature FM-AFM
measurements were essential for achieving the required signal
to noise ratio for the atomic imaging. At T = 22 K, atomic
scale structures with 2.46 Å periodicity were found. However,
their AFM image showed not a hexagonal but a trigonal
structure. Hölscher et al [86] explained the discrepancy
by simulation using the Lennard–Jones potential shown in
figure 16. The measured and simulated atomic resolution
image of the HOPG is shown in figures 16(a) and (c),
respectively. The line profiles in figures 16(b) and (d) show
two maxima (M1, M2) and two minima (m1, m2), in which
spacing is 1.42 Å. This is the nearest neighbor distance for
carbon atoms. The simulation results show that the tip–sample
attractive force on the hollow (H) sites at the center of the
hexagon is larger than that on the carbon atom sites because
the tip interacts with 6 carbon atoms in a hexagon at the hollow
site. There are two different atomic sites, A and B in graphite.
A site has a nearest neighbor atom in the lower layer, while
B site does not. The minima m1 and m2 correspond to the
atomic sites B and A, respectively.

The (1 1 1) surface of xenon thin film was studied on
the atomic-scale using FM-AFM by Allers et al [85]. The

solid xenon forms very weakly bound crystal because of
inert properties. For this kind of imaging, very stable
operating conditions are required. These were implemented
at a low-temperature UHV AFM. The atomic image shows
sixfold symmetry with 4.35 Å nearest neighbor distance
implying the (1 1 1) surface of FCC structure. The measured
atomic corrugation of the Xe surface was 25 pm, which
is especially large compared with other samples. From
theoretical expectation using LJ potential, the corrugation was
expected to be 5 pm [4]. Giessibl and Bielefeldt [69] attributed
the discrepancy to the elastic deformation of weakly bound Xe
atoms in the crystal. In other words, the Xe atoms were pulled
to the surface by the tip because of attractive interaction forces.

Some atomic-scale regular patterns were found by static
(contact) AFM in ambient conditions. However, this is not a
real atomic image, but a collective interaction image of many
atoms. Most true atomic resolution images were obtained from
a vacuum. Outstanding images among them show detailed
features of atomic nature. These were done at low temperatures
close to 4.2 K. In early experimental instruments, the optical
fiber interferometry method was employed [72, 75, 80, 87–
89, 91, 93, 97]. Optical interferometry uses the interference
signal between beams emitted from cleaved optical fiber and
bounded from cantilever. For this optical alignment, the
micro-positioner for fiber translation in 3-dimension and the
coarse approach mechanism for tip–sample distance control
are required. As a result, the setup is complicated and is not
suitable for low temperature (millikelvin temperature) AFM
because a large amount of heat is unavoidable.

Recently developed novel tuning fork based AFM has
emerged as a candidate for ultra low-temperature AFM
[35, 83, 90, 92, 94–96, 98, 99]. Due to the compactness
and low power dissipation, the tuning fork is a very
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Table 2. List of notable publications regarding high resolution AFM imaging in vacuum and at low temperature.

Author/affiliation Methods Sample/features Year Reference

Ohta/Hiroshima Optical fiber Graphite 1994 [87]
Uchihashi/Osaka Optical fiber Si 7 × 7 1997 [72]
Fukui (Iwasawa)/Tokyo JSPM-4500 TiO2 1997 [82]
Hug (Guntherodt)/Basel Optical fiber NaCl 1999 [88]
Reichling/Freie Optical fiber CaF3 1999 [89]
Schwarz (Wiesendanger)/Hamburg Optical fiber InAs 2000 [80]
Giessibl/Augsburg Tuning fork Si 7 × 7 2000 [35]
Rychen (Ensslin)/ETH Tuning fork Si 7 × 7 2000 [90]
Lantz (Guntherodt)/Basel Optical fiber Si 7 × 7 2001 [75]
Foster/College London Omicron CaF2 2001 [83]
Suehira/Osaka Optical fiber Si 7 × 7 2001 [91]
Vancura (Ensslin)/ ETH Tuning fork 2EDG 2003 [92]
Oyabu (Custance)/Osaka Optical fiber Si 7 × 7 2003 [93]
Brown (Kane)/Maryland Tuning fork 100 mK 2004 [94]
Heyde (Freund)/Max-Planck Tuning fork NiAl(1 1 0) 2004 [96]
Seo (Chandrasekhar)/Northwestern Tuning fork SrRuO3 2005 [95]
Li (Sugawara)/Osaka Optical fiber Si(0 0 1) 2006 [97]
Gildemeister/ETH Tuning fork 100 mK 2007 [98]
Sugimoto (Custance)/Osaka Optical fiber Sn/Pb/Si 2007 [99]

promising candidate for future AFM sensors to study quantum
phenomena on an atomic scale. The tuning fork is a kind of
piezo electric resonator made of quartz having a very high
quality factor (Q = 3000 in air, it increases by a factor of 10
in vacuum, and 100 at T = 4.2 K). In table 2, a list of notable
publications regarding high resolution AFM imaging is shown.
To improve the AFM resolution and study the quantum nature
of nano-structures, recent AFM instruments have a tendency to
decrease temperature to 4.2 K. And the tuning fork method has
been adapted commonly for millikelvin temperature settings.

7. Summary

Since its invention in 1986 [1], the atomic force microscope
(AFM) has been used as an essential tool for studying surface
interactions by means of force–distance measurement. A
great deal of work has been performed both theoretically
and experimentally. The main development of the AFM was
assisted by the invention of the micro-machined cantilever.
With the advance of MEMS technology, more sophisticated
cantilevers with high aspect ratio tip and high Q-value have
been developed. Not only optical deflection techniques,
but also piezo-electric detection techniques were developed.
These include the piezoresistive cantilever methods and the
quartz crystal tuning fork method.

When a tip is close to the surface, many different kinds of
interacting forces are superposed. The vdW force is exerted
on neutral atoms, which is based on the Coulomb interaction.
Electrostatic force exists on ionic crystals as well as metallic
samples with static charges. Chemical force is a very short-
range attractive force originating from chemical interactions
forming chemical bonding. Sophisticated AFMs operating in
a vacuum and at low temperatures show high resolution images
with atomic resolution. This stems from short-range chemical
forces or electrostatic forces.

AFM has been employed in a variety of research fields
including nano-technology and bio-technology. Since a

pioneering work on receptor–ligand bonds studied by Merkel
et al [11], force spectroscopy has served as an important tool to
study biological, physical, chemical and molecular sciences.
With static AFM spectroscopy, force–distance curves can be
obtained for specific molecules with a functionalized tip. The
force–distance curve of the static AFM shows jump-to-contact
and jump-off-contact phenomena, which causes a hysteresis
loop. From the hysteresis loop, the interacting force strength
and distance dependence can be analyzed.

The dynamic AFM uses the resonant nature of the
cantilever. One can measure the resonance frequency
shift, amplitude and phase. In the case of AM-AFM, the
exciting force frequency is fixed and the amplitude and phase
are measured. For FM-AFM, the exciting frequency is
spontaneously changed following the instantaneous resonance
frequency shift, while the amplitude is controlled at a certain
value. The simplest model to relate the frequency shift
for interacting forces is the harmonic approximation. The
harmonic approximation is valid only for long-range forces
like magnetic or electrostatic forces. Lee and Jhe’s formalism
for AM-AFM by using the Laplace transformation provided a
rigorous method for the AM force spectroscopy.

Most high resolution AFM images with atomic scales
have been obtained by using FM-AFM at UHV and low
temperature. The theoretical formalisms for FM-AFM were
discussed for small and large amplitudes, separately. The
normalized frequency shift γ1A is a good reference point for
comparing force strength between the tip and the sample. From
experimental data for frequency versus distance, the force–
distance curve can be deduced by the inversion procedure
suggested by Dürig [73].

Atomic resolution imaging technique has been developed
through sophisticated experimental efforts for low-temperature
and high-vacuum measurements with dedicated frequency
control and detection. The Si(1 1 1) 7 × 7 imaging technique
was established as an example for investigating the atomic
nature of the sample. Furthermore, the surface physics of ionic
crystals and covalent bonding crystals like solid Xe and HOPG
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as well as semiconductors have been studied by using the FM-
AFM technique.

Conventionally, for low-temperature UHV-AFM, optical
fiber interferometry has been employed to detect the cantilever
motion located in the low-temperature vacuum chamber. Its
complicated instrument and unavoidable excessive heat load,
however, make it difficult to apply to millikelvin temperature
ranges provided by the dilution refrigerator. Recently, in
the effort to reach ultra low-temperature ranges below 4.2 K,
tuning fork based AFM has been developed and studied by
many pioneering research groups. Due to its advantages,
which include compactness and low power dissipation, the
tuning fork is a promising candidate for future AFM sensors
to study quantum phenomena on an atomic scale.
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Guggisberg M, Loppacher C, Gerber C and Güntherodt H-J
1998 Appl. Phys. A 66 s293

[82] Fukui K, Onishi H and Iwasawa Y 1997 Phys. Rev. Lett.
79 4202

[83] Foster A S, Barth C, Shluger A L and Reichling M 2001 Phys.
Rev. Lett. 86 2373

[84] Allers W, Schwarz A, Schwarz U D and Wiesendanger R 1999
Appl. Surf. Sci. 140 247

[85] Allers W, Schwarz A, Schwarz U D and Wiesendanger R 1999
Europhys. Lett. 48 276

[86] Hölscher H, Allers W, Schwarz U D, Schwarz A and
Wiesendanger R 2000 Phys. Rev. B 62 6967

[87] Ohta M, Sugawara Y, Morita S, Nagaoka H, Mishima S and
Okada T 1993 J. Vac. Sci. Technol. B 12 1705

[88] Hug H J, Stiefel B, van Schendel P J A, Moser A, Martin S and
Güntherodt H-J 1999 Rev. Sci. Instrum. 70 3625

[89] Reichling M and Barth C 1999 Phys. Rev. Lett. 83 768
[90] Rychen J, Ihn T, Studerus P, Herrmann A, Ensslin K, Hug H J,

van Schendel P J A and Güntherodt H-J 2000 Appl. Surf.
Sci. 157 290

[91] Suehira N, Tomiyoshi Y, Sugawara Y and Morita S 2001 Rev.
Sci. Instrum. 72 2971

[92] Vancura T, Kicin S, Ihn T, Ensslin K, Bichler M and
Wegscheider W 2003 Appl. Phys. Lett. 83 2602

[93] Oyabu N, Custance O, Yi I, Sugawara Y and Morita S 2003
Phys. Rev. Lett. 90 176102

[94] Brown K R, Sun L and Kane B E 2004 Rev. Sci. Instrum.
75 2029

[95] Seo Y, Cadden-Zimansky P and Chandrasekhar V 2005 Appl.
Phys. Lett. 82 103103

[96] Heyde M, Kulawik M, Rust H-P and Freund H-J 2006 Phys.
Rev. B 73 125320

[97] Li Y J, Nomura H, Ozaki N, Naitoh Y, Kageshima M and
Sugawara Y 2006 Phys. Rev. Lett. 96 106104

[98] Gildemeister A E, Ihn T, Barengo C, Studerus P and Ensslin K
2007 Rev. Sci. Instrum. 78 013704

[99] Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S and
Custance O 2007 Nature 446 64

23

http://dx.doi.org/10.1016/S0169-4332(98)00549-2
http://dx.doi.org/10.1103/PhysRevB.61.9968
http://dx.doi.org/10.1103/PhysRevB.59.13267
http://dx.doi.org/10.1103/PhysRevB.61.11151
http://dx.doi.org/10.1103/PhysRevB.56.9834
http://dx.doi.org/10.1063/1.125983
http://dx.doi.org/10.1116/1.573160
http://dx.doi.org/10.1126/science.1057824
http://dx.doi.org/10.1103/PhysRevB.68.045301
http://dx.doi.org/10.1103/PhysRevB.64.075402
http://dx.doi.org/10.1126/science.270.5242.1646
http://dx.doi.org/10.1116/1.589182
http://dx.doi.org/10.1103/PhysRevB.61.2837
http://dx.doi.org/10.1007/s003390051148
http://dx.doi.org/10.1103/PhysRevLett.79.4202
http://dx.doi.org/10.1103/PhysRevLett.86.2373
http://dx.doi.org/10.1016/S0169-4332(98)00535-2
http://dx.doi.org/10.1209/epl/i1999-00477-3
http://dx.doi.org/10.1103/PhysRevB.62.6967
http://dx.doi.org/10.1063/1.1149970
http://dx.doi.org/10.1103/PhysRevLett.83.768
http://dx.doi.org/10.1016/S0169-4332(99)00541-3
http://dx.doi.org/10.1063/1.1368854
http://dx.doi.org/10.1063/1.1614836
http://dx.doi.org/10.1103/PhysRevLett.90.176102
http://dx.doi.org/10.1063/1.1753104
http://dx.doi.org/10.1063/1.2037852
http://dx.doi.org/10.1103/PhysRevB.73.125320
http://dx.doi.org/10.1103/PhysRevLett.96.106104
http://dx.doi.org/10.1063/1.2431793
http://dx.doi.org/10.1038/nature05530

	1. Introduction
	2. Interacting forces
	2.1. van der Waals interactions
	2.2. Electrostatic force
	2.3. Chemical force
	2.4. Capillary force
	2.5. Repulsive force
	2.6. Atomic resolution

	3. Static atomic force microscopy and spectroscopy
	3.1. Static atomic force microscopy
	3.2. Force spectroscopy using static AFM

	4. AM atomic force microscopy and spectroscopy
	4.1. AM atomic force microscopy
	4.2. AM force spectroscopy

	5. FM atomic force microscopy and spectroscopy
	5.1. FM atomic force microscopy
	5.2. FM force spectroscopy

	6. Atomic imaging
	6.1. Atomic image in semiconductor
	6.2. Atomic image in ionic crystal
	6.3. Atomic images of HOPG and inert gases

	7. Summary
	Acknowledgments
	References

