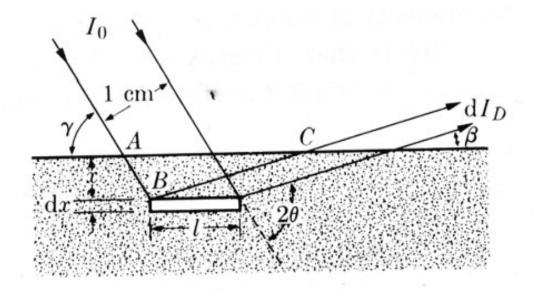
Applicazioni della diffrazione di raggi X all'analisi dei film sottili

M.Baricco
Dipartimento di Chimica IFM
NIS/INFM/INSTM
Università di Torino

A.Chiodoni
Dipartimento di Fisica
Politecnico di Torino

PROFONDITA' DI PENETRAZIONE DEI RAGGI X

- Considerando la geometria Bragg-Brentano (BB) dei normali diffrattometri, ci possiamo chiedere da dove viene l'informazione
- (B.D.Cullity, Elements of X-ray diffraction, 2nd ed., Addison-Wesley Pub.)



- Si considera per semplicità i raggio incidente parallelo e di ampiezza unitaria.
- Si considera una porzione del campione di lunghezza *l*, spessore *dx*, larghezza unitaria (quindi con volume *ldx*) ad una profondità *x* dalla superficie.
- Si considera l'assorbimento della radiazione elettromagnetica dovuto all'attraversamento del campione (legge di Lambert-Beer):

$$I = I_0 \exp(-\mu x)$$

• Nel primo tratto AB, la perdita sarà tale che l'intensità incidente sulla posizione considerata sarà pari a:

$$I_0 \exp[-\mu(AB)]$$

• Nel volume considerato, solo una frazione pari ad *a* sarà in condizioni di diffrazione e solamente una frazione pari a *b* dell'energia incidente sarà effettivamente diffratta.L'intensità diffratta risulterà pertanto:

$$I_0 \exp[-\mu(AB)] \bullet ab \bullet ldx$$

- Poiché, una volta diffratto, il fascio dovrà uscire dal campione percorrendo il tratto BC, si avrà una ulteriore riduzione di intensità dovuta all'assorbimento, di un ulteriore fattore exp[-μ(BC)].
- L'intensità del raggio diffratto sarà pertanto: $dI_D = I_0 exp[-\mu(AB+BC)] \bullet ab \bullet ldx$.
- Da considerazioni geometriche l=1/sinγ,
 AB=x/sin γ, BC=x/sinβ, da cui:

$$dI_D = \frac{I_0 ab}{\sin \gamma} \exp \left[-\mu x \left(\frac{1}{\sin \gamma} + \frac{1}{\sin \beta} \right) \right] dx$$

• Nel caso della geometria Bragg-Brentano (BB), si ha $\gamma=\beta$, da cui:

$$dI_D = \frac{I_0 ab}{\sin \vartheta} \exp \left[-\frac{2\mu x}{\sin \vartheta} \right] dx$$

- Considerando costanti I_0 , a e b (reso costante dal fattore di Lorentz), si può stimare l'effetto dell'assorbimento al variare di x e di θ .
- Se si considera la somma (o meglio l'integrale) di tutti gli strati fino a spessore infinito:

$$I_D = \int_{x=0}^{x=\infty} dI_D = \frac{I_0 ab}{2\mu}$$

indicando che la caduta di intensità (assorbimento) è indipendente da 2θ.

Cosa si considera come SPESSORE INFINITO?

• Consideriamo uno spessore che provochi un abbattimento della intensità pari ad 1/1000 rispetto a quella ottenuta dalla superficie: $dI_0(x=0)/dI_0(x=t)=exp(2\mu t/sin\theta)=1000$ da cui:

$$t=3.45\sin\theta/\mu$$
.

• P.es. per una polvere di Ni (CuK α , densità al 60% del bulk) si ha μ =48.83*0.6*8.9=261cm⁻¹ e per θ =90 (sin θ =1) si ha t=3.45/261=1.3210⁻⁴ m = 132 μ m.

Da quale profondità arrivano le informazioni contenute in uno spettro?

$$dI_D = \frac{I_0 ab}{\sin \gamma} \exp \left[-\mu x \left(\frac{1}{\sin \gamma} + \frac{1}{\sin \beta} \right) \right] dx$$

• Possiamo considerare il rapporto tra l'intensità dovuta ad uno spessore x rispetto ad uno spessore infinito:

$$G_{x} = \frac{\int_{x=0}^{x=x} dI_{D}}{\int_{x=0}^{x=0} dI_{D}} = 1 - \exp\left[-\mu x \left(\frac{1}{\sin \gamma} + \frac{1}{\sin \beta}\right)\right]$$

• Questo ci dice quale frazione della informazione contenuta nello spettro arriva da uno spessore x dalla superficie.

• Per la geometria BB ($\gamma=\beta=\theta$) si ha $G_x=1-exp(-\mu x/sin2\theta)$

• Per bassi valori di 2θ, lo spessore di penetrazione diminuisce sensibilmente.

Andamento di G_x per un campione di rame in funzione della distanza dalla superficie

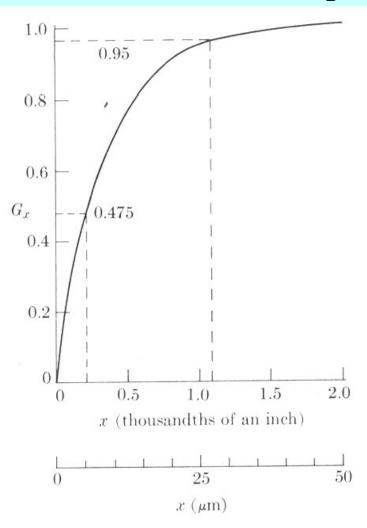


Fig. 9-6 The fraction G_x of the total diffracted intensity contributed by a surface layer of depth x, for $\mu = 473 \text{ cm}^{-1}$, $2\theta = 136.7^{\circ}$, and normal incidence.

• Per semplicità, l'equazione può essere scritta come:

$$\frac{2\mu x}{\sin\vartheta} = \ln\left(\frac{1}{1 - G_x}\right) = K_x$$

da cui $x=K_x \sin\theta/2\mu$.

• In pratica, si fissa G_x (frazione di informazione che interessa), si determina K_x e si calcola x. P.es. per il picco (110) del Fe analizzato con anticatodo di Cu, il 95% delle informazioni contenute nello spettro arrivano dai primi 2 μm a partire dalla superficie.

$x = Kx \sin \theta / 2\mu$

• PER AVERE INFORMAZIONI DAL CUORE:

2θ alto (alti valori di hkl, λ lunga) μ basso (λ corta)

• PER AVERE INFORMAZIONI DALLA SUPERFICIE:

 2θ basso (bassi valori di hkl, λ corta, con conseguente errore sui parametri di cella) μ alto (λ lunga)

FORTI LIMITAZIONI USANDO LA GEOMETRIA BB

QUANDO È NECESSARIO AVERE INFORMAZIONI DALLA SUPERFICIE?

- Film sottili
- Riporti superficiali
- Multistrati
- Film a struttura variabile (graded film)

QUAL'E' LA DEFINIZIONE DI FILM SOTTILE?



IL FILM SOTTILE (O QUANTO DEVE ESSERE OSSERVATO) E' DEPOSITATO SU UN SUBSTRATO

FILM

Monocristallino

Policristallino

SUBSTRATO

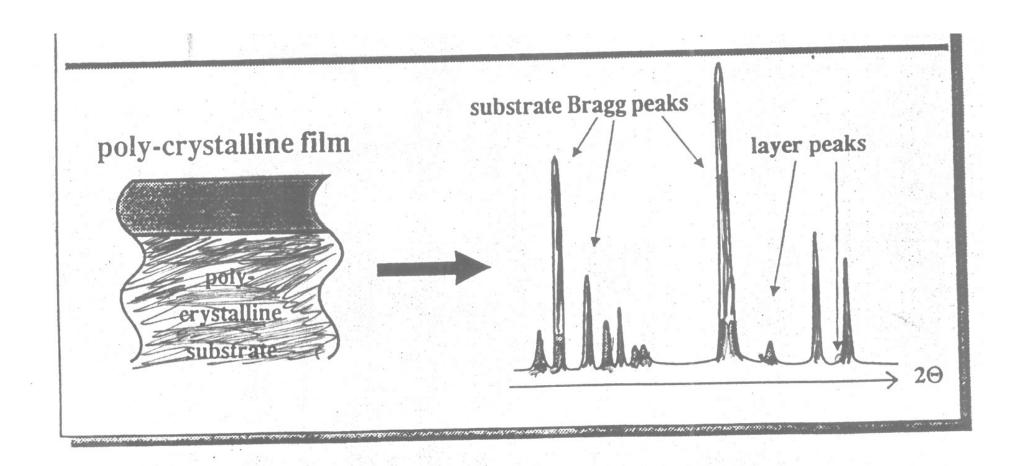
Monocristallino

Amorfo

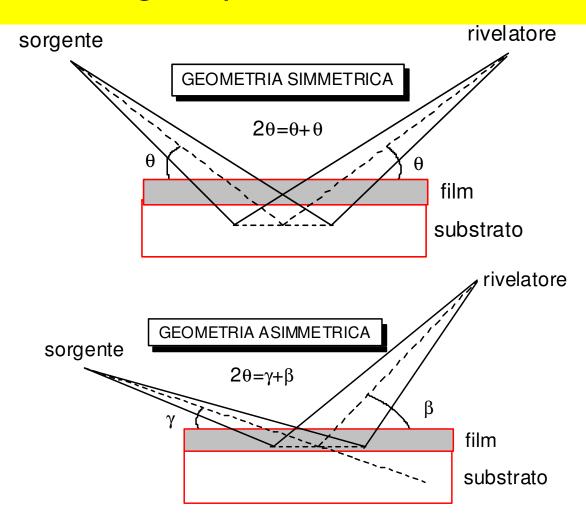
Policristallino

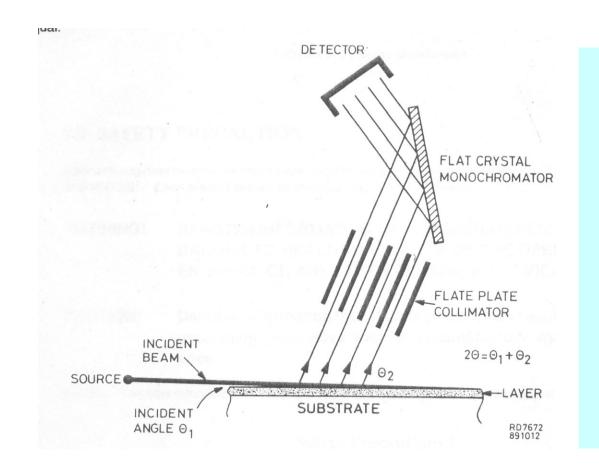
• Lo scopo della analisi è di ottenere il massimo della informazione dal film senza essere disturbati dal contributo del substrato.

Film policristallino su un substrato policristallino



Il problema si risolve rendendo SVINCOLATI il raggio incidente (angolo γ) dal raggio diffratto (angolo β).

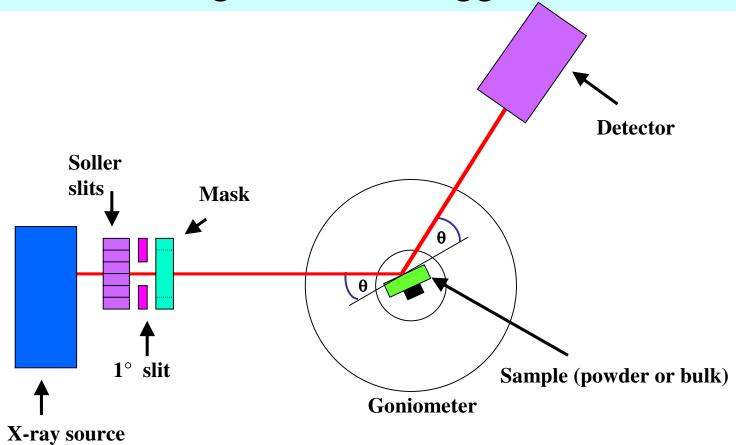




Schema della geometria asimmetrica (Parallel Beam)

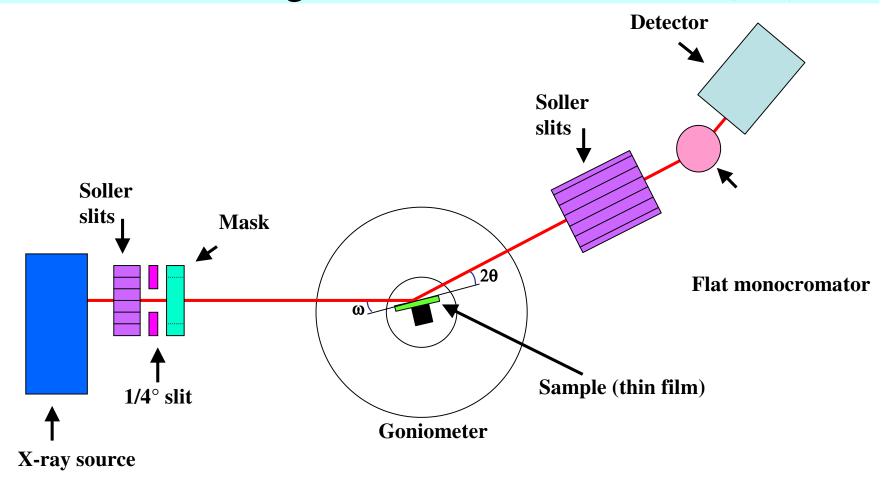
Per ottenere buone prestazioni occorre sempre avere un COLLIMATORE ed un MONOCROMATORE in uscita. In realtà il fascio incidente non è totalmente parallelo (**Pseudo-Parallel Beam**)

Schema della geometria Bragg-Brentano (BB)



La misura si effettua facendo ruotare insieme il campione ed il rivelatore (θ :2 θ scan o Gonio)

Schema della geometria Parallel-Beam (PB)



La misura si effettua facendo ruotare solamente il il rivelatore (2θ scan) mantenendo fisso l'angolo ω .

Geometria Seeman-Bohlin (SB)

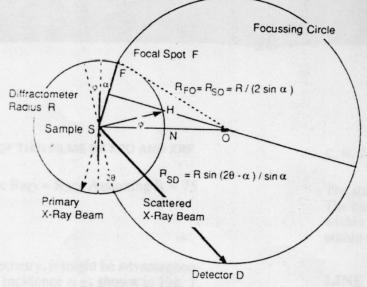
• E' un analogo della geometria parafocalizzante ma applicata ai film sottili. Garantisce sempre le condizioni di focalizzazione.

•Per mantenere la focalizzazione, il detector (D) deve trovarsi sempre alla distanza R_{SD} dal campione e quindi sulla circonferenza di raggio R_{FO} . Queste condizioni richiedono un moto del rivelatore rispetto al campione, che diventa proibitivo per angoli di incidenza bassi.

Fig. 2.

Focussing Seemann-Bohlin diffractometer. The sample S remains fixed at the constant angle

mains fixed at the constant angle of incidence α , while the detector slit moves the along SD by the amount R_{SD} = Rsin(20 - α)/sin α to remain on the focussing circle of radius R_{FO} = R_{SO} = R/(2sin α), where R is the radius of the diffractometer.

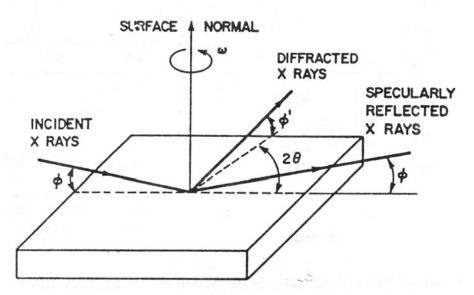


Quanto PICCOLO può essere l'angolo incidente?

- Se l'angolo incidente è troppo piccolo (inferiore all'angolo critico α_c), si possono raggiungere le condizioni di riflessione.
- α_c dipende dalla radiazione incidente e dalla densità elettronica del campione. Assume tipicamente valori dell'ordine di 0.3° - 0.5° .
- Oltre alla riflessione, si ha diffrazione causata dai piani reticolari perpendicolari alla superficie del campione.

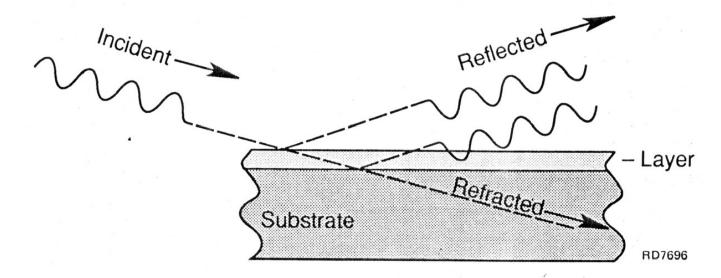
GRAZING-INCIDENCE-X RAY DIFFRACTION (GIXD)

- La misura si effettua facendo ruotare il campione lungo l'asse perpendicolare alla superficie del campione.
- Richiede:
 - accuratissimo posizionamento del campione
 - intensità incidenti forti
 - fascio di dimensioni ridotte
- Si ottengono profondità di penetrazione molto basse e pertanto questa tecnica viene usata per lo studio dei primi strati superficiali (ricostruzioni superficiali).

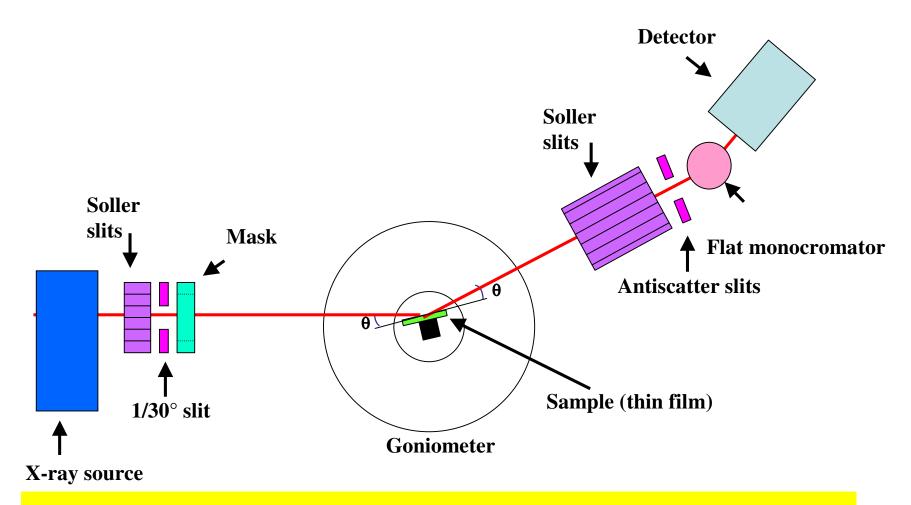


Riflettometria

• Superando di poco l'angolo critico (α_c) ed effettuando una misura in θ :2 θ , è possibile ottenere una misura dello spessore D del film (o dello strato).



Schema della geometria per Riflettometria

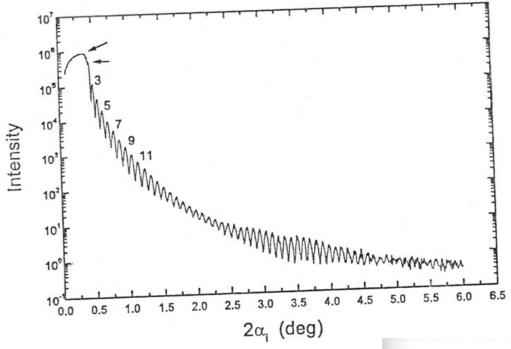


La misura si effettua facendo ruotare insieme il campione ed il rivelatore (θ :2 θ scan o Gonio)

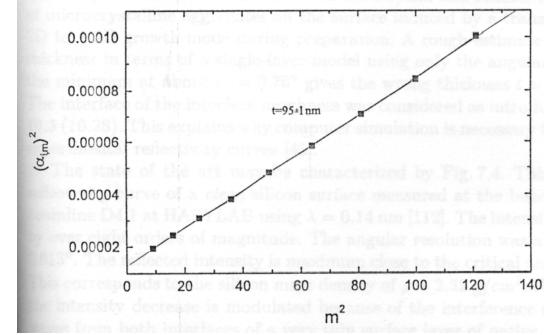
- Nel corso della scansione si ottengono diversi massimi di interferenza (KIESSIG FRINGES), che permettono di calcolare lo spessore del film.
- La posizione dei massimi è data da:

$$\alpha_m^2 = \alpha_c^2 + m^2 \left(\frac{\lambda}{2D}\right)^2$$

• Riportando $\alpha_{\rm m}^2$ in funzione di m², si ottiene una retta, da cui è possibile ottenere D e $\alpha_{\rm c}$.



Strato di BN su substrato di Si



• Una dimostrazione semplificata della metodologia può essere dedotta dalla applicazione della legge di Bragg:

$n\lambda = 2d\sin(\theta)$

considerando $\alpha=\theta$ piccolo (quindi sin $\theta=\alpha$), d=D e n=m, da cui

D(Å)

88

440

882

 $\Delta\alpha(^{\circ})$

0.5

0.1

0.05

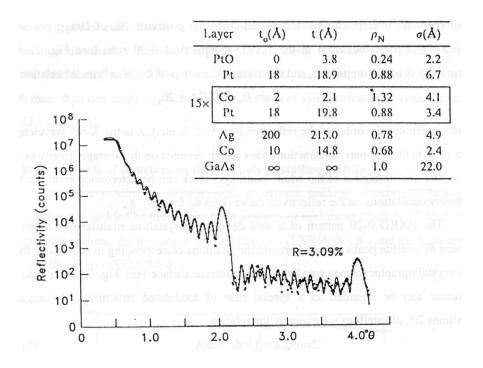
 $\alpha = \lambda m/2D$

e quindi

 $D = \lambda/2\Delta\alpha$.

•	Usando una radiazione di Cu K_{α} , si possono
	determinare spessori di alcune decine di Å.

- Per ottenere facilmente una misura di spessore occorre avere:
 - Superfici di separazione molto nette
 - Forte contrasto film/substrato
 - Piccole divergenze del raggio incidente
- Approcci più sofisticati permettono di tenere conto di:
 - Rugosità
 - Multistrati
 - Gradienti
- Il dato sperimentale può essere confrontato con quello calcolato mediante opportuni modelli attraverso un approccio di tipo Rietveld.

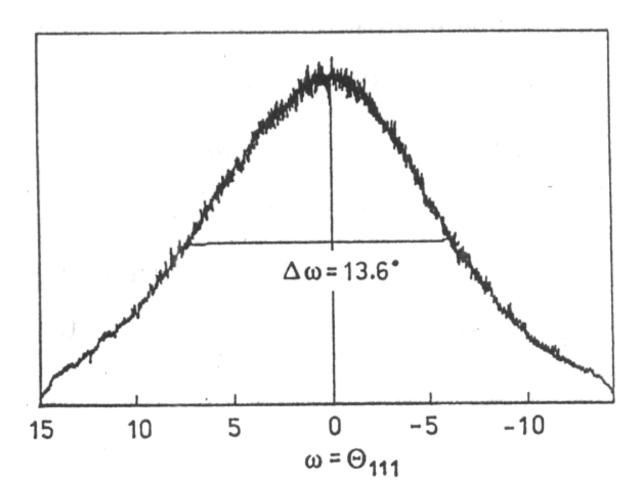


RIASSUNTO

	BB	PB/SB	GIXD	REFL
Moto	θ:2θ alti	ω fisso basso scan 2θ alti	ω<α _c rotazione lungo asse normale	θ:2θ bassi
Piani osservabili	Paralleli alla superficie	Anche inclinati rispetto alla superficie	Perpendicolari alla superficie	Piano del film
Informazioni ottenibili	Qualitative Quantitative Micorstrutt.	Qualitative Quantitative Micorstrutt.	Struttura superficiale	Qualità e spessore del film
Applicazioni	Materiali massivi	Film e strati superficiali	Superfici e strati epitessiali	Film e strati superficiali

..altre misure possibili ROCKING CURVE

- Utilizzata per verificare la qualità della orientazione cristallografica dello strato.
- Si sceglie un piano cristallografico da analizzare e si fissa il rivelatore sulla posizione 2θ opportuna.
- Il rivelatore rimane fisso e si esegue una oscillazione del campione lungo l'angolo ω .
- Si riporta l'intensità in funzione dell'angolo ω .



• Spesso la misura della rocking-curve permette una analisi veloce delle tessiture, che possono essere meglio analizzate con goniometri specifici (Schultz).

..altre misure possibili TENSIONI RESIDUE

- Spesso la deposizione di strati superficiali lascia forti tensioni residue (di trazione o di compressione) che comportano una piccola variazione dei parametri reticolari del materiale che costituisce il film.
- L'analisi viene effettuata con il metodo del " $\sin^2 \psi$ ".

- In pratica si esegue una scansione θ :2 θ , collocando il campione con una angolo di "tilt ψ " crescente.
- Si riporta poi il valore del parametro reticolare (determinato dal massimo del picco di diffrazione) in funzione di sin²ψ. Dalla pendenza si ottiene il valore richiesto di tensione residua.

QUANDO CONVIENE USARE LA GEOMETRIA ASIMMETRICA?

• Considerando la geometria simmetrica (BB) e prendendo, per semplicità $K_x=2$ ($G_x=0.865$ o 86.5%), si ha

```
x=sinθ/μ
```

che corrisponde (Cu K_{α}) a:

 $x=76 \sin\theta [\mu m] \text{ per Al}$ $x=11 \sin\theta [\mu m] \text{ per Ti}$ $x=4 \sin\theta [\mu m] \text{ per Pb}$

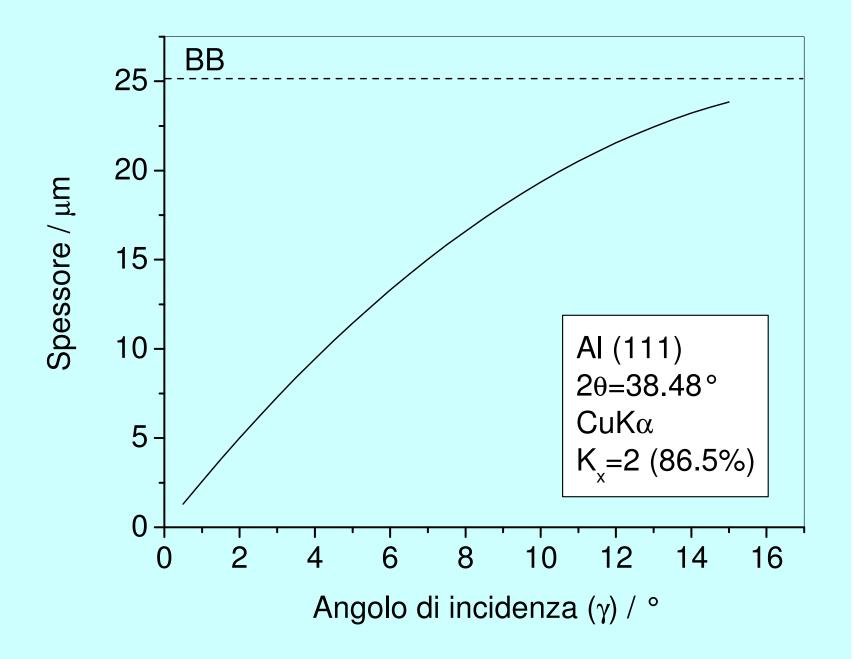
• Tipicamente gli strati da analizzare sono $\approx 0.1 \sin\theta/\mu$, ma occorre sempre valutare se c'e' convenienza nell'usare la geometria asimmetrica.

• Considerando la geometria asimmetrica (PB) si ha $\gamma \neq \beta$ e l'espressione per lo spessore diventa:

$$G_{x} = 1 - \exp\left[-\mu x \left(\frac{1}{\sin \gamma} + \frac{1}{\sin \beta}\right)\right]$$

$$K_{x} = \ln\left(\frac{1}{1 - G_{x}}\right) = \mu x \left[\frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta}\right]$$

$$x = \frac{K_x}{\mu} \left(\frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta} \right)$$



- Una stima più ragionevole della convenienza ad usare la geometria asimmetrica si ha considerando il rapporto tra la intensità prodotta dallo **STRATO** rispetto a quella prodotta dal **SUBSTRATO**.
- Considerando l'espressione già vista:

$$dI_D = \frac{I_0 ab}{\sin \gamma} \exp \left[-\mu x \left(\frac{1}{\sin \gamma} + \frac{1}{\sin \beta} \right) \right] dx$$

• Intensità dello **STRATO** di spessore **D**:

$$I_{1} = \int_{0}^{D} dI_{D} = \frac{abI_{0}}{\sin \gamma} \frac{1 - \exp\left(-\mu_{1}D\frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta}\right)}{\mu_{1}\frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta}} = \frac{abI_{0}}{\sin \gamma \sin \beta}$$

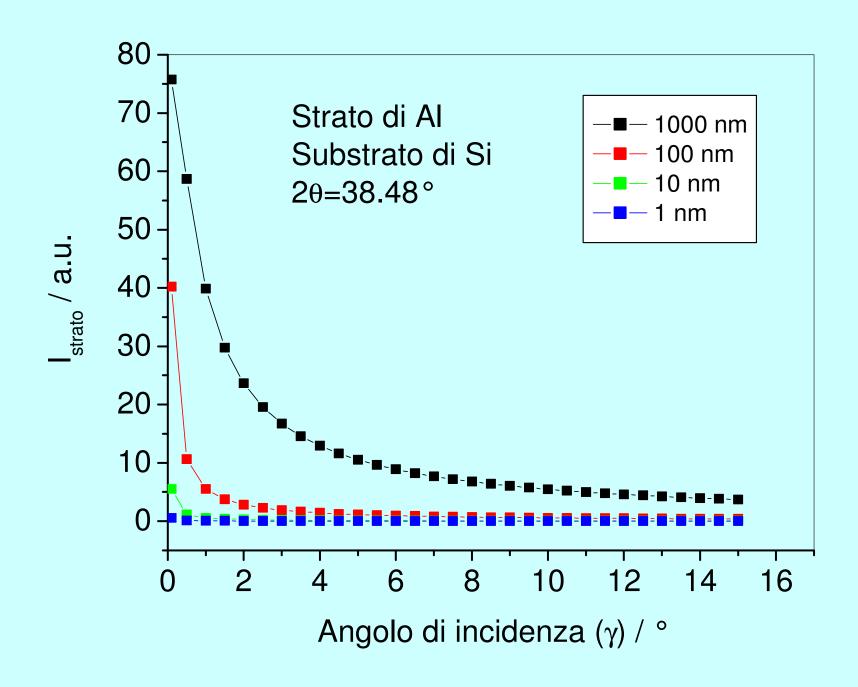
$$= \frac{abI_0}{\sin \gamma \mu_1} \frac{\sin \gamma \sin \beta}{\sin \gamma + \sin \beta} \left[1 - \exp \left(-\mu_1 D \frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta} \right) \right]$$

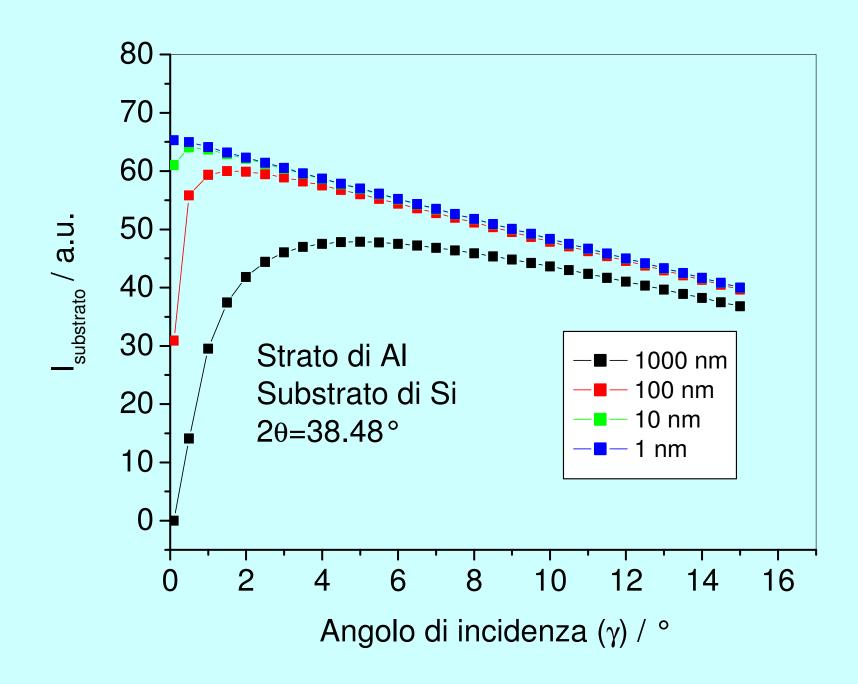
• Intensità del **SUBSTRATO**:

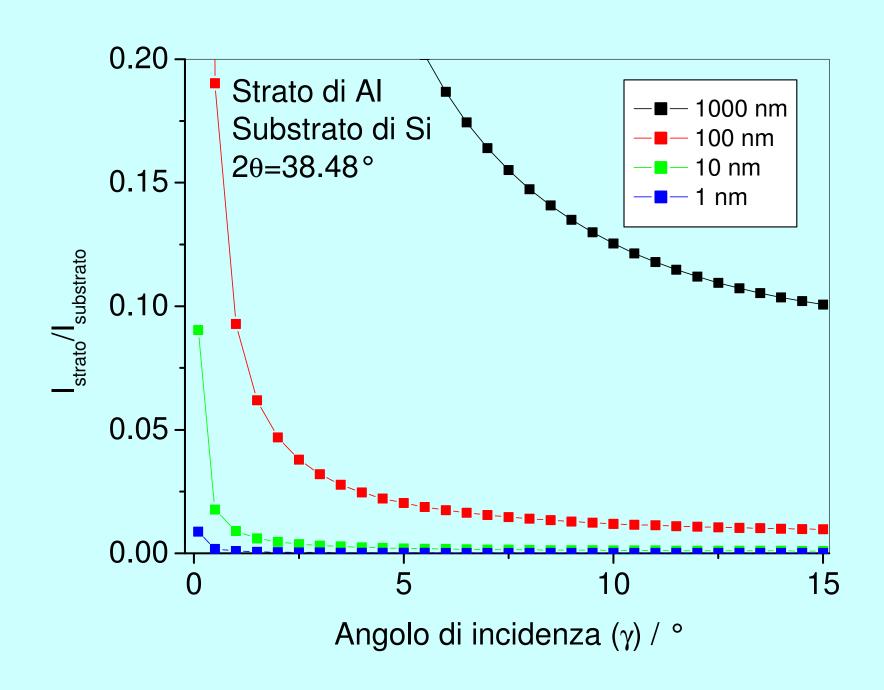
$$I_{s} = \frac{abI_{0}}{\sin \gamma \mu_{s}} \frac{\sin \gamma \sin \beta}{\sin \gamma + \sin \beta} \exp \left(-\mu_{1}D \frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta}\right)$$

• Rapporto tra le intensità:

$$\frac{I_1}{I_s} = \frac{\mu_s}{\mu_1} \left[\exp\left(-\mu_1 D \frac{\sin \gamma + \sin \beta}{\sin \gamma \sin \beta}\right) - 1 \right]$$



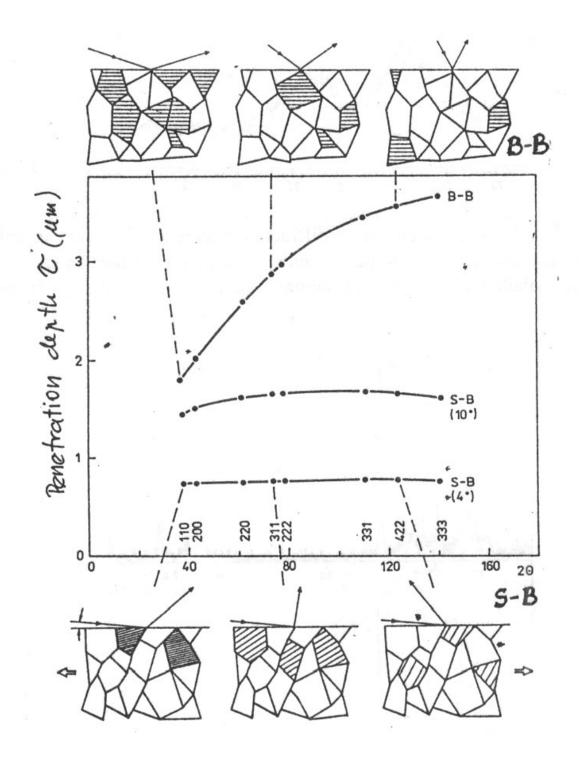




..dalle stime effettuate si può concludere che:

- Per i film sottili la geometria asimmetrica comincia a diventare vantaggiosa per angoli di incidenza γ inferiori a circa 2° .
- Il vero vantaggio si ha per la riduzione dello scattering del substrato.
- Se lo scattering del substrato è basso (amorfo o cristallo singolo) il vantaggio della geometria asimmetrica è molto ridotto.

Film di TiN (CuK_{α})



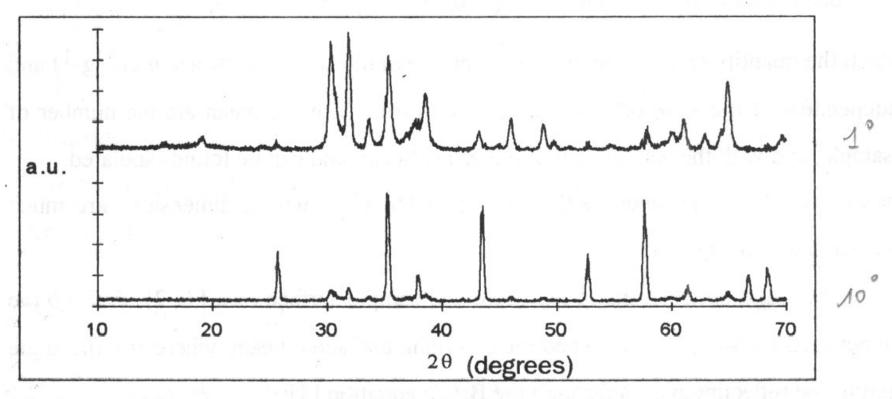


Figure 1 - Diffraction pattern of a layer of Ga₂O₃ on alumina substrate at 1° incidence angle (upper) showing mainly the bands relative to gallium oxide (JCPDS # 41-1103) and at 10° (lower) showing predominantly the alumina bands (JCPDS # 42-1468); a.u. means arbitrary units.

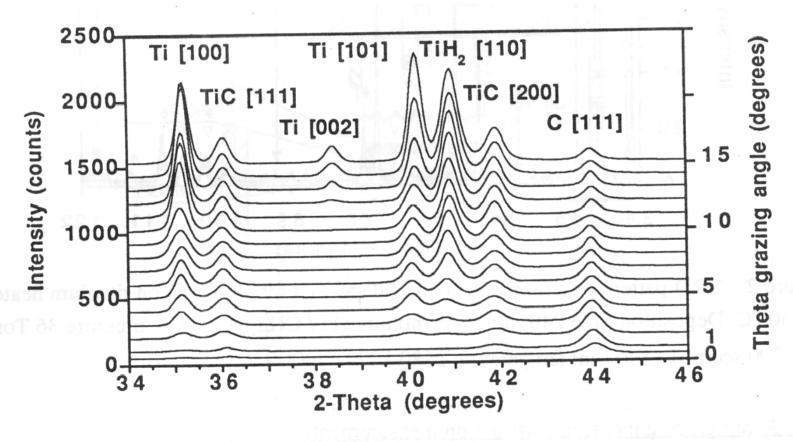


Figure 3 - Set of grazing incidence diffraction patterns, which puts into evidence the growth sequence of the three phases: diamond, titanium carbide, and titanium hydride.

..e per le tensioni residue?

• Nel caso di misura delle tensioni residue, considerazioni analoghe alle precedenti permettono di stimare uno spessore efficace pari a :

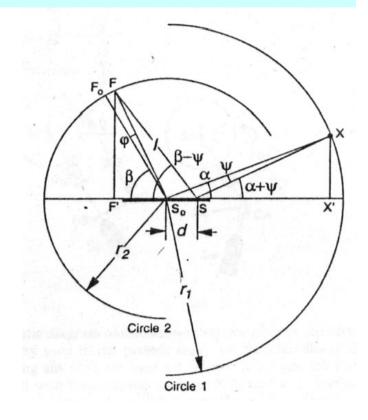
$$x = \frac{K_x}{2\mu} = \frac{\sin^2\theta\cos^2\psi - \cos^2\theta\sin^2\psi}{\sin\theta\cos\psi}$$

considerando $\gamma = \theta + \psi$ e $\beta = \theta - \psi$.

• All'aumentare di ψ vengono pertanto analizzate zone sempre più prossime alla superficie. Nel caso in cui si abbiano gradienti nelle tensioni residue, il plot di "sin² ψ " risulterà non lineare.

FUNZIONE STRUMENTALE

L'angolo φ provoca un allargamento della funzione strumentale che risulta data da:



$$FWHM = \sqrt{U \tan^2 \theta + V \tan \theta + W + \psi_0^2 \left\{ \left(\frac{r_1}{r_2} \right) \left[\frac{\sin(2\theta - \alpha)}{\sin \alpha} - 1 \right] \right\}^2}$$

$$FWHM = \sqrt{U \tan^2 \theta + V \tan \theta + W + \psi_0^2 \left\{ \left(\frac{r_1}{r_2} \right) \left[\frac{\sin(2\theta - \alpha)}{\sin \alpha} - 1 \right] \right\}^2}$$

- Nel caso della geometria simmetrica (**BB**) si ha $r_1=r_2$ e $\alpha=\theta$ e si ritorna pertanto alla espressione classica di CPR.
- Per bassi valori di α, il termine asimmetrico diventa dominante nel determinare la FWHM.
- Il termine asimmetrico mostra un massimo per $2\theta=90^{\circ}$
- La geometria asimmetrica provoca anche una asimmetria del picco, soprattutto per bassi valori dell'angolo di incidenza.

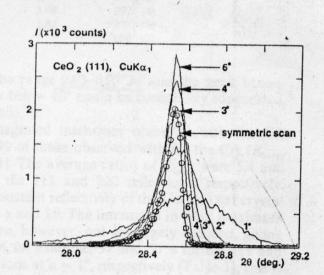


Fig. 4. Six profiles of the 111 reflection from CeO_2 observed with symmetric θ -2 θ scanning (open circles linked with a solid line) and asymmetric 2 θ scanning at fixed incident angle $\alpha = 1, 2, 3, 4$ and 6° .

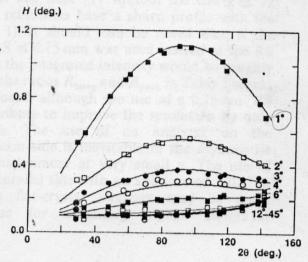


Fig. 5. Variation of FWHM with 2θ at various incident angles α (symbols: solid squares for $\alpha = 1$, 6 and 30°, open squares for $\alpha = 2$, 12 and 45°, solid circles for $\alpha = 3$ and 18° and open circles for $\alpha = 4$ and 24°).

Esempio di funzione strumentale determinata con polvere di CeO₂ (NIST_SRM674). Picchi descritti con pseudoVoigt.

- Sul picco (111) a 2θ=28.6°, la
 FWHM passa da 0.104° (BB) a 0.534
 PB, α=1).
- Per α bassi si ha uno spostamento del picco verso angoli 2θ alti. Lo spostamento può essere stimato da $\Delta 2\theta = \alpha (\alpha^2 \alpha_c^2)^{1/2}$.
- Per α>10° la funzione strumentale PB è molto simile a quella della BB.

EFFETTO SULLA INTENSITA'

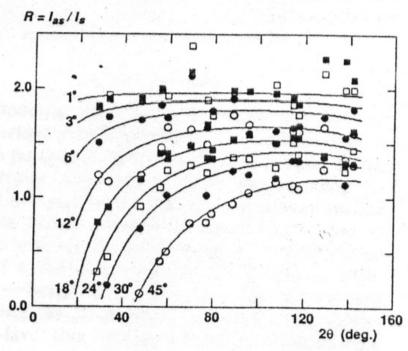


Fig. 7. Variation of intensity ratio I_{as}/I_s against 2θ at various incident angles α (symbols: solid squares for $\alpha = 1$ and 18° , open squares for $\alpha = 3$ and 24° , solid circles for $\alpha = 6$ and 30° and open circles for $\alpha = 12$ and 45°).

 Nel caso della geometria PB si ha una esaltazione della intensità per angoli 2θ>2α data da:

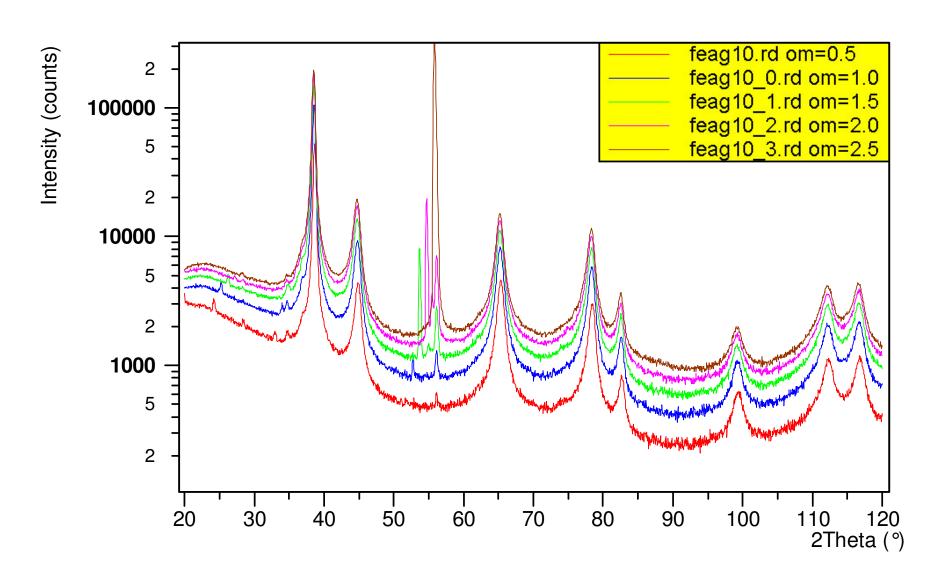
$$R = \frac{I_{AS}}{I_S} = \frac{2}{1 + \frac{\sin \alpha}{\sin \beta}}$$

- Una volta nota la funzione strumentale per la geometria PB, si possono applicare allo spettro di diffrazione tutte le analisi di profilo previste per la geometria BB:
 - Analisi singolo picco
 - Warren-Averbach
 - Williamson-Hall
 - Rietveld
 - etc

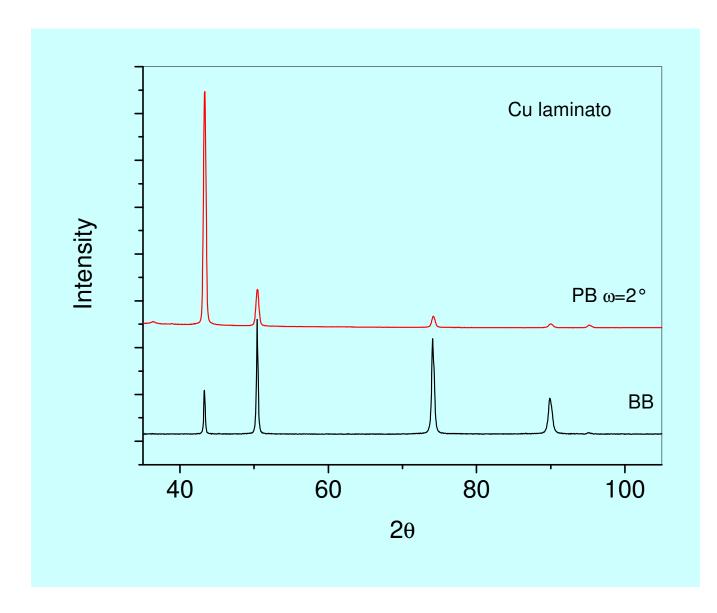
Riferimenti bibliografici

- B.D.Cullity, ELEMENTS OF X-RAY DIFFRACTION, 2nd ed., Addison-Wesley Pub.
- THIN FILM CHARACTERISATION BY ADVANCED x-RAY DIFFRACTION TECHNIQUES, G. Cappuccio, M.L. Terranova eds., SIS Pubblicazioni, Frascati (1996)
- V.Holý, U.Pietsch, T.Baumbach, HIGH-RESOLUTION X-RAY SCATTERING FROM THIN FILMS AND MULTILAYERS, Springer Tracs in Modern Physics, Vol. 149, (1998)
- C.N.J.Wagner, M.S.Boldrik, L.Keller, MICROSTRUCTURAL CHARACTERISATION OF THIN POLYCRYSTALLINE FILS BY X-RAY DIFFRACTION, Adv. X-ray Anal. 31 (1988) 129
- H.Toraya, J.Yoshino, PROFILES IN ASYMMETRIC DIFFRACTION WITH PSEUDO-PARALLEL-BEAOM GEOMETRY, J.Appl.Cryst. 27 (1994) 961

Co-sputtering di Fe ed Ag su wafer di Si

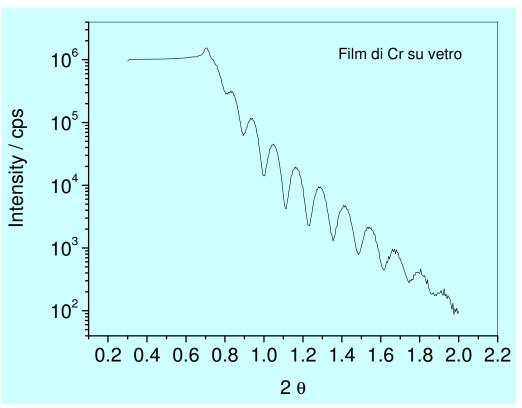


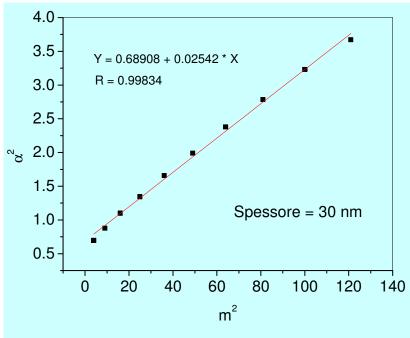
Cu laminato



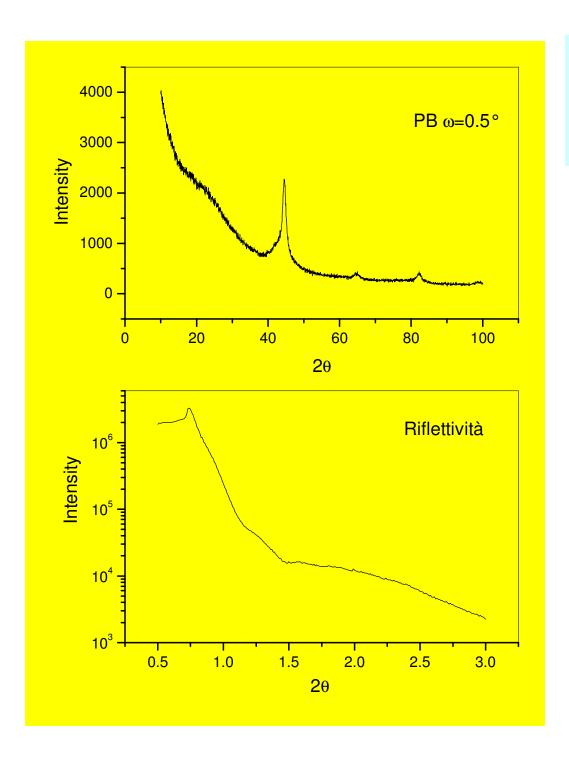
- •Intensità relative dei picchi
- Ossidi a bassi angoli con PB
- •Funzione strumentale

Spessore di film di Cr su vetro





$$\alpha_m^2 = \alpha_c^2 + m^2 \left(\frac{\lambda}{2D}\right)^2$$



Film di Fe-Tb depositato su vetro.

- •Si individua una struttura di tipo bcc.
- •Non è possibile determinare lo spessore: effetti di rugosità della interfaccia.

Microelectronic Engineering 55 (2001) 233-241

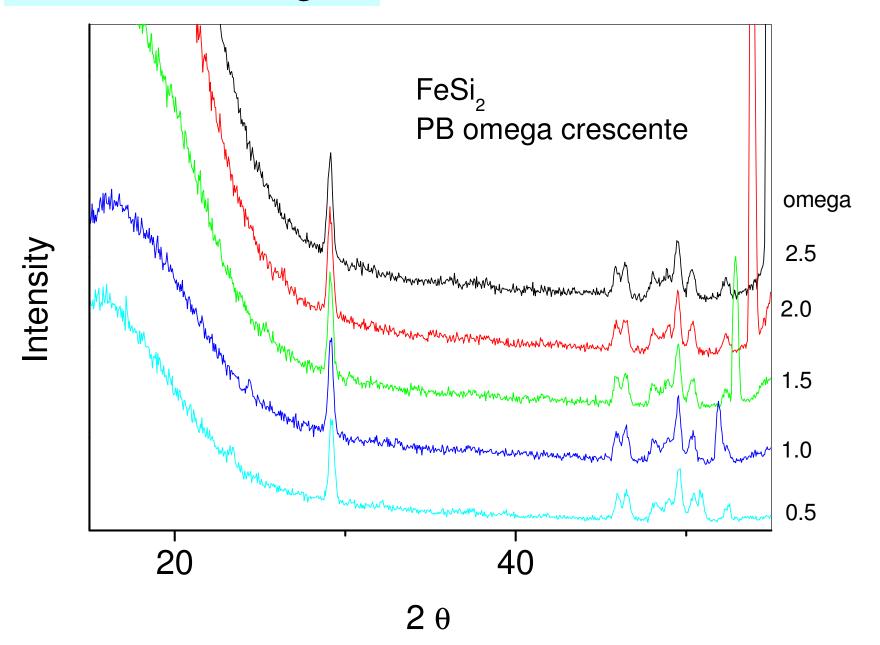
www.elsevier.nl/locate/mee

Structural and optical properties of $Fe_{1-x}M_xSi_2$ thin films (M=Co, Mn; $0 \le x \le 0.20$)

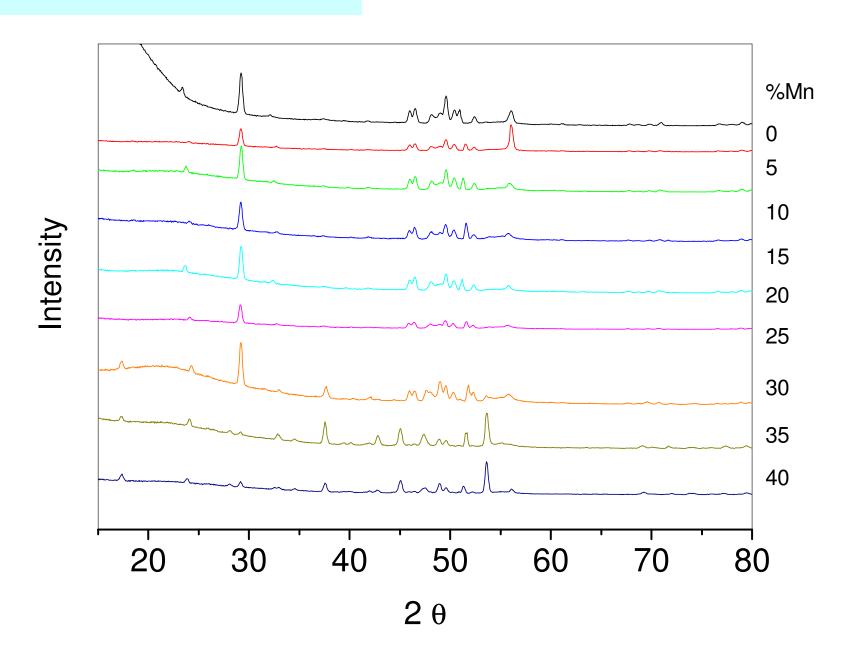
M. Fanciullia,*, A. Zenkevichb,1, G. Weyerb, C. Vanzinie, E. Tressoe, M. Bariccod

Laboratorio MDM — INFM, I-20041 Agrate Brianza (MI), Italy
 Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
 Dipartimento di Fisica and INFM, Politecnico di Torino, Torino, Italy
 Dipartimento di Chimica IFM and INFM, Universit di Torino, Torino, Italy

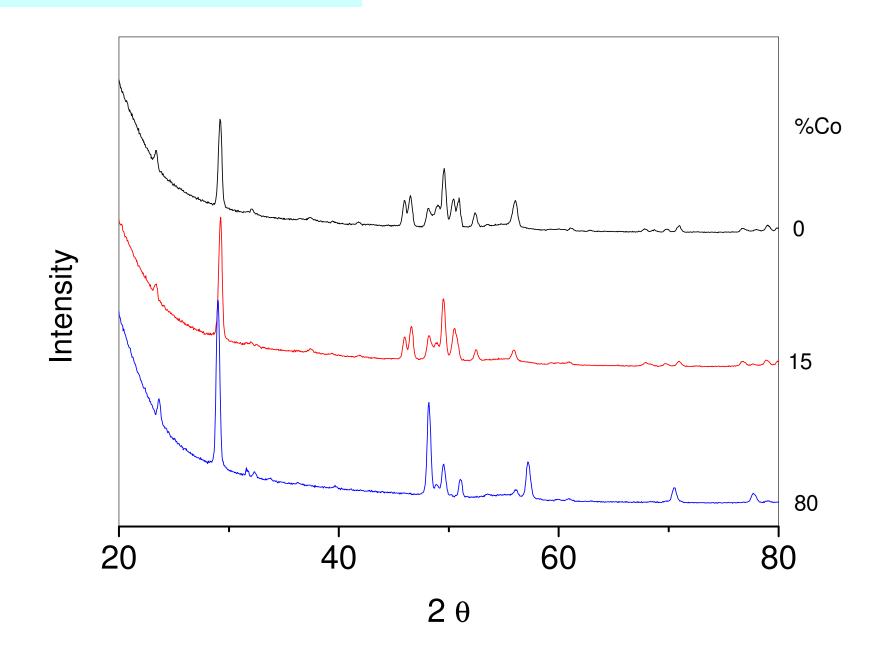
Effetto di omega



Effetto della % di Mn



Effetto della % di Co



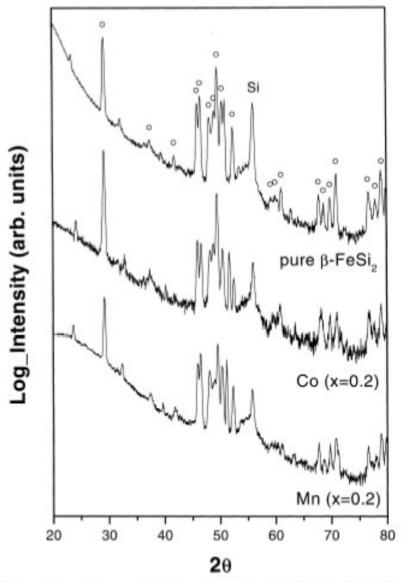


Fig. 1. XRD of (a) β -FeSi₂, (b) Fe_{0.80}Co_{0.20}Si₂, and (c) Fe_{0.80}Co_{0.20}Si₂. (\bigcirc) Peaks attributed to the orthorhombic structure.

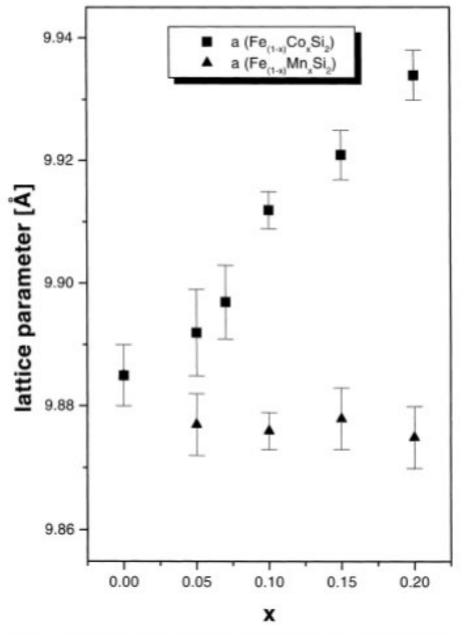


Fig. 2. Lattice parameter a for different Co and Mn contents.

- •Co tende a formare una soluzione solida.
- •Mn tende a segregare.

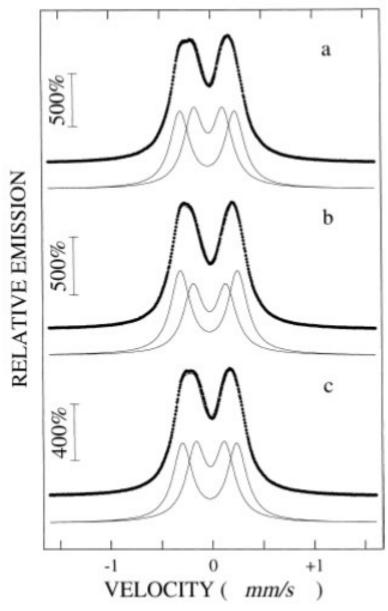


Fig. 3. CEMS of some of the investigated films: (a) $\beta\text{-FeSi}_2,$ (b) $\text{Fe}_{0.85}\text{Co}_{0.15}\text{Si}_2,$ (c) $\text{Fe}_{0.85}\text{Mn}_{0.15}\text{Si}_2,$

Table 1 Experimental results for some of the investigated $Fe_{1-x}M_xSi_2$ films (shown in Fig. 3). The CEMS spectra were fitted assuming two quadrupole doublets. Mössbauer parameters: δ , isomer shift relative to α -Fe at room temperature; Γ , line width; Δ , quadrupole splitting; $A_i/\Sigma A_i$, population fraction

Sample	M	X	Thickness (nm)	δ (mm/s)	Γ (mm/s)	∆ (mm/s)	$A_i/\Sigma A_i$ (%)
A149	=	0.00	110	0.08(1) 0.09(1)	0.23(1) 0.23(1)	0.54(1) 0.29(1)	51.0(1) 49.0(1)
A129	Co	0.15	150	0.09(1) 0.09(1)	0.23(1) 0.23(1)	0.56(1) 0.32(1)	55.8(5) 44.2(5)
A141	Mn	0.15	85	0.09(1) 0.09(1)	0.23(1) 0.23(1)	0.53(1) 0.29(1)	51.7(1) 48.3(1)